
OPERATION AND INSTALLATION

Integral cylinder

» HSBC 200 S (GB)

STIEBEL ELTRON

SPECIAL INFORMATION

OPERATION

1.	General information	_3
1.1	Relevant documents	3
1.2	Safety instructions	. 3
1.3	Other symbols in this documentation	
1.4	Information on the appliance	
1.5	Units of measurement	. 3
2.	Safety	
2.1	Intended use	
2.2	General safety instructions	
2.3	Test symbols	- [
3.	Appliance compatibility	
4.	Appliance description	
5.	Settings	_5
6.	Cleaning, care and maintenance	_5
7.	Troubleshooting	_5
INSTAL	LATION	
8.	Safety	6
8.1	General safety instructions	
8.2	Instructions, standards and regulations	
9.	Appliance description	
9.1	Standard delivery	
9.2	Accessories	
10.	Preparations	
10.1	Installation site	_ 6
10.2	Transport and handling	7
11.	Installation	
11.1	Positioning the equipment	
11.2	Heating water connection and safety valve	1(
11.3	DHW connection and safety assembly	12
11.4	Filling the system	13
11.5	Venting the appliance	14
12.	Power supply	14
12.1	Electric emergency/booster heater and control voltage	15
12.2		18
12.3	Remote control	18
13.		19
13.1	Checks before commissioning the heat pump manager	19
13.2	Commissioning the heat pump manager	
13.3	Circulation pumps Wilo-Para/Sc	
13.4	Appliance handover	
14.	Shutdown	21
15.	Maintenance	21
16.	Specification	
16.1	Dimensions and connections	
16.2	Hydraulic diagram	
16.3	Wiring diagram	
16.4	Details on energy consumption	
16.5	Data table	20

SPECIAL INFORMATION

- The appliance may be used by children aged 8 and older and persons with reduced physical, sensory or mental capabilities or a lack of experience and know-how, provided that they are supervised or they have been instructed on how to use the appliance safely and have understood the resulting risks. Children must never play with the appliance. Children must never clean the appliance or perform user maintenance unless they are supervised.
- The connection to the power supply must be in the form of a permanent connection. Ensure the appliance can be separated from the power supply by an isolator that disconnects all poles with at least 3 mm contact separation.
- Observe all applicable national and regional regulations and instructions.
- Observe minimum distances (see chapter "Installation / Preparations / Installation site").
- Only a qualified contractor should carry out installation, commissioning, maintenance and repair of the appliance.

DHW cylinder

- Drain the appliance as described in chapter "Installation / Maintenance / Draining the DHW cylinder".
- Observe the maximum permissible pressure (see chapter "Installation / Specification / Data table").
- The appliance is pressurised. During the heat-up process, expansion water will drip from the safety valve.
- Regularly activate the safety valve to prevent it from becoming blocked, e.g. by limescale deposits.
- The safety valve discharge aperture must remain open to atmosphere.

ENVIRONMENT AND RECYCLING

General information

OPERATION

General information 1.

The chapters "Special Information" and "Operation" are intended for both the user and qualified contractors.

The chapter "Installation" is intended for qualified contractors.

Note
Read these instructions carefully before using the appliance and retain them for future reference.

Pass on the instructions to a new user if required.

Relevant documents 1.1

- Operating and installation instructions for the WPM heat pump manager
- Operating and installation instructions for the connected heat pump
- Operating and installation instructions for all other system components

1.2 Safety instructions

1.2.1 Structure of safety instructions

KEYWORD Type of risk

Here, possible consequences are listed that may result from failure to observe the safety instructions.

► Steps to prevent the risk are listed.

1.2.2 Symbols, type of risk

Symbol	Type of risk
\triangle	Injury
<u>A</u>	Electrocution
	Burns (burns, scalding)

1.2.3 Keywords

KEYWORD	Meaning
DANGER	Failure to observe this information will result in serious injury or death.
WARNING	Failure to observe this information may result in serious injury or death.
CAUTION	Failure to observe this information may result in non-serious or minor injury.

Other symbols in this documentation 1.3

General information is identified by the adjacent symbol. ► Read these texts carefully.

Symbol	Meaning
!	Material losses (appliance damage, consequential losses and environmen- tal pollution)
7	Appliance disposal

- ► This symbol indicates that you have to do something. The action you need to take is described step by step.
- ☐ ☐ These symbols show you the software menu level (in this example level 3).

1.4 Information on the appliance

Connections

Symbol	Meaning	
—	Inlet / intake	Red arrow: Hot Blue arrow: Cold Green arrow: Neutral
G •	Drain / outlet	Red arrow: Hot Blue arrow: Cold Green arrow: Neutral
	Domestic hot water	
	DHW circulation	
	Heat pump	
	Central heating	

Units of measurement 1.5

All measurements are given in mm unless stated otherwise.

Safety

2. Safety

2.1 Intended use

This appliance is intended to be used for heating and cooling interiors (area cooling 18 °C / 23 °C) and for DHW heating.

This appliance is intended for domestic use. It can be used safely by untrained persons. The appliance can also be used in a non-domestic environment, e.g. in a small business, as long as it is used in the same way.

Any other use beyond that described shall be deemed inappropriate. Observation of these instructions and of instructions for any accessories used is also part of the correct use of this appliance.

2.2 General safety instructions

WARNING Burns

There is a risk of scalding at outlet temperatures in excess of 43 °C.

WARNING Injury

The appliance may be used by children aged 8 and older and persons with reduced physical, sensory or mental capabilities or a lack of experience and know-how, provided that they are supervised or they have been instructed on how to use the appliance safely and have understood the resulting risks. Children must never play with the appliance. Children must never clean the appliance or perform user maintenance unless they are supervised.

WARNING Injury

For safety reasons, only operate the appliance with the front casing closed.

Note

The DHW cylinder is under supply pressure. During the heat-up process, expansion water will drip from the safety valve.

► If water continues to drip when heating is completed, please inform your qualified contractor.

2.3 Test symbols

See type plate on the appliance.

3. Appliance compatibility

The appliance can be operated in conjunction with the following air | water heat pumps:

- WPI 13 F
- WPL 10 AC (S)
- WPL 15-25 AC (S), WPL 15-25 A (S)
- WPL 19/24 IK
- WPL 07-17 ACS classic
- HPA-0 7-13 (C/S/CS) Premium

4. Appliance description

The buffer cylinder and DHW cylinder with indirect coil are arranged one above the other and can be separated for easier handling.

The appliance has a plastic jacket with foam insulation and is equipped with a removable front casing. The appliance is connected hydraulically and electrically to the heat pump. All hydraulic connections are made at the top.

In addition to the DHW cylinder and the buffer cylinder, further system components are integrated:

- Heat pump manager
- Cylinder primary pump
- Highly efficient circulation pump for a heating circuit without mixer
- Multifunction assembly with safety valve and 3-way diverter valve
- Emergency/booster heater for mono energetic operation

DHW cylinder

The steel cylinder is coated on the inside with special direct enamel and is equipped with a signal anode. The anode with consumption indicator protects the cylinder interior from corrosion.

The heating water heated by the heat pump is pumped through an indirect coil inside the DHW cylinder. The heat channelled through the indirect coil is thus transferred to the domestic hot water. The integral heat pump manager regulates the DHW heating to the required temperature.

Buffer cylinder

The steel cylinder provides hydraulic separation between the flow rates of heat pump and heating circuit. The heating water heated by the heat pump is transferred into the buffer cylinder by the cylinder charging pump. When a demand is issued, the integral heating circuit pump delivers the heating water to the heating circuit.

Heat pump manager (WPM)

The system is controlled by means of the integral heat pump manager.

The heat pump manager is suitable for the control of a direct heating circuit and a heating circuit with mixer.

You can set the times and temperatures for heating operation and heating DHW. Remote controls for controlling the direct heating circuit and the heating circuit with mixer are available as accessories.

For detailed information, see the enclosed operating and installation instructions for the WPM heat pump manager.

Multifunction assembly (MFG)

The multifunction assembly switches between heating circuit and DHW heating.

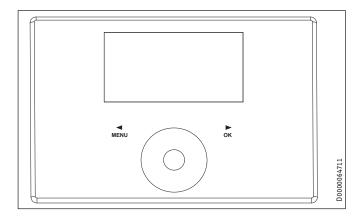
OPERATION

Settings

5. Settings

Material losses

The system's active frost protection is not guaranteed if the power supply is interrupted.

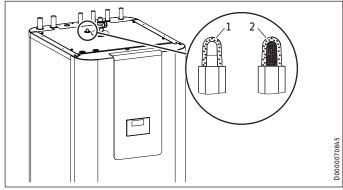

► Never interrupt the power supply even outside the heating season.

Note

The heat pump manager has an automatic summer/winter changeover so you can leave the system switched on in summer.

The system is controlled by means of the integral heat pump manager. Please observe the heat pump manager operating and installation instructions.

6. Cleaning, care and maintenance


- ► Have the electrical safety of the appliance and the function of the safety assembly regularly checked by a qualified contractor.
- Never use abrasive or corrosive cleaning agents. A damp cloth is sufficient for cleaning the appliance.

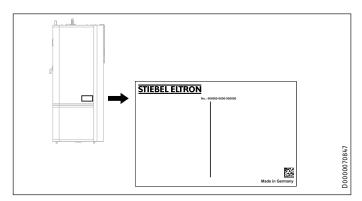
Signal anode with consumption indicator

Material losses

If the consumption indicator changes colour from white to red, have the signal anode checked by a qualified contractor and if necessary replaced.

- 1 White = Anode OK
- 2 Red = Requires checking by qualified contractor

Scaling


Almost every type of water will deposit limescale at high temperatures. This settles inside the appliance and affects both the performance and service life. A qualified contractor who knows the local water quality will tell you when the next service is due.

- ► Check the taps regularly. Limescale deposits at the tap outlets can be removed using commercially available descaling agents.
- ► Regularly activate the safety valve to prevent it from becoming blocked, e.g. by limescale deposits.

7. Troubleshooting

Problem	Cause	Remedy
The water does not heat up. The heating does not work.	There is no power.	Check the fuses/MCBs in your fuse box/distribution panel.

If you cannot remedy the fault, notify your qualified contractor. To facilitate and speed up your request, provide the number from the type plate (000000-0000-000000).

Safety

INSTALLATION

8. Safety

Only a qualified contractor should carry out installation, commissioning, maintenance and repair of the appliance.

8.1 General safety instructions

We guarantee trouble-free function and operational reliability only if original accessories and spare parts intended for the appliance are used.

8.2 Instructions, standards and regulations

Note

Observe all applicable national and regional regulations and instructions.

9. Appliance description

9.1 Standard delivery

The following are delivered with the appliance:

- Operating and installation instructions for the WPM heat pump manager
- Outside temperature sensor AF PT
- 4 adjustable feet
- Drain hose
- 1 expansion vessel (incl. fastening material)
- 1 installation kit (pressure reducing valve, check valves, expansion relief valve, tundish)

9.2 Accessories

Required accessories

Safety assemblies and pressure reducing valves are available to suit the prevailing supply pressure. These type-tested safety assemblies protect the appliance against impermissible excess pressure.

Required for area cooling:

- Temperature sensor PT1000
- FET remote control

Further accessories

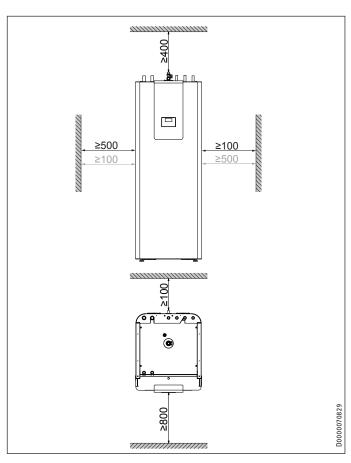
- Pump assembly for a heating circuit with mixer HSBC-HKM
- Remote control for heating operation
- High limit safety cut-out STB-FB
- Pressure hoses
- Water softener HZEA

10. Preparations

10.1 Installation site

Material losses

Never install the appliance in wet rooms.


Install the appliance near the draw-off point in a dry room free from the risk of frost. To reduce line losses, keep the distance short between the appliance and the heat pump.

Ensure the floor has sufficient load-bearing capacity and evenness (for weight, see chapter "Specification / Data table").

The room must not be subject to a risk of explosions arising from dust, gases or vapours.

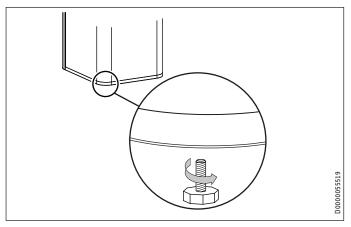
If you are installing the appliance in a boiler room together with other heating equipment, ensure that the operation of other heating equipment will not be impaired.

Minimum clearances

The minimum side clearances can be swapped to left or right.

Preparations

10.2 Transport and handling

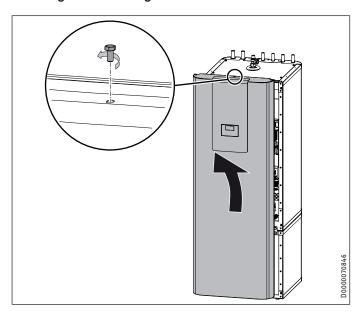


Material losses

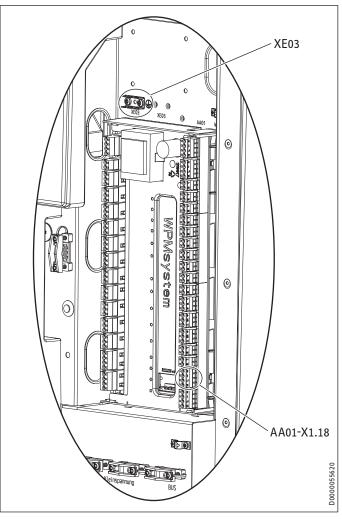
Store and transport the appliance at temperatures of -20 $^{\circ}$ C to +60 $^{\circ}$ C.

Handling

▶ Undo the 4 screws from the non-returnable pallet.



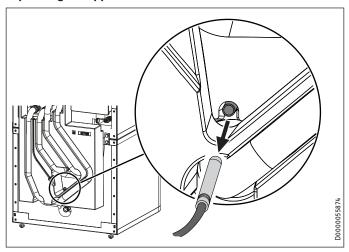
- ► Tilt the appliance and wind the 4 adjustable feet into the appliance.
- ► Lift the appliance off the pallet. For a better hold during transport, use the recessed grips on the underside and rear of the appliance.


If narrow doors or hallways hinder handling, you can separate the upper and lower sections of the appliance as described in the following chapters.

10.2.1 Removing / fitting the front casing

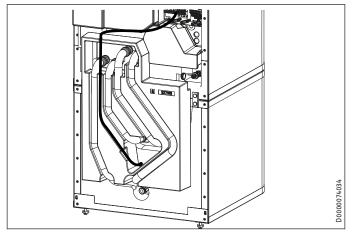
Removing the front casing

- ► Remove the screw at the top in the middle of the appliance.
- ▶ Unhook the front casing towards the top.

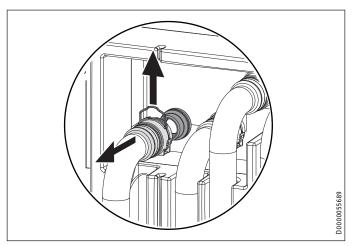

► Detach the plug of the electronic assembly for operation (AA01-X1.18) and the earth connection (XE03) on the heat pump manager.

Fitting the front casing

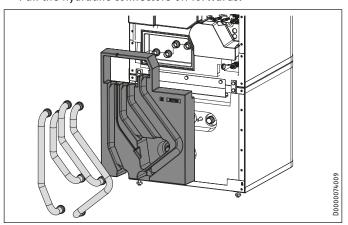
Fit the front casing in reverse order.

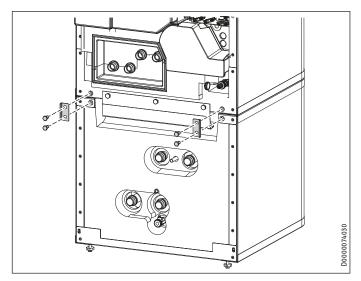

10.2.2 Separating / joining the appliance sections

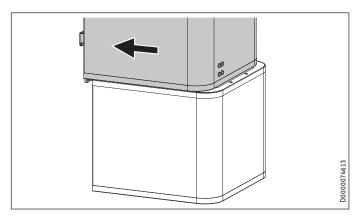
Separating the appliance sections

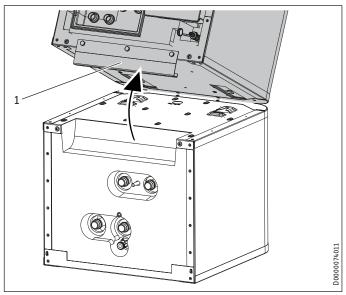


▶ Pull the "heating sensor" out of the buffer cylinder.

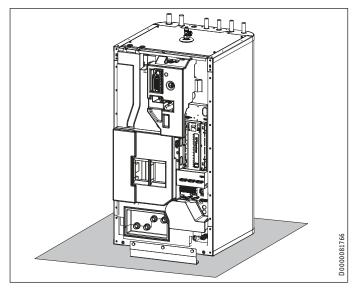

Preparations


► Release the sensor lead from the guide groove in the insulation segment.


- ▶ Disconnect the push-fit connectors of the 4 hydraulic connections. To do this, pull the spring clips fully out with a screwdriver.
- ▶ Pull the hydraulic connectors off forwards.


► Remove the 4 hydraulic hoses and the insulation segment.

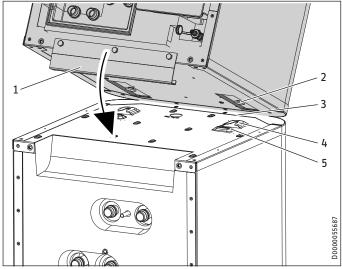
▶ Release the 4 screws on the tabs at the front of the appliance.



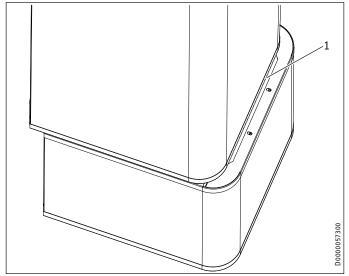
▶ Pull the upper section of the appliance towards the front.

- 1 Handle
- ► Tip the upper section of the appliance backwards. Use the handle for improved grip.

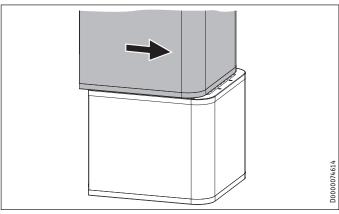
Preparations



► Place the upper section of the appliance on a base to prevent damage.


Joining appliance sections

Rejoin the appliance sections in reverse order.


The positioning aids and the dotted line marking provide assistance when positioning and inserting the upper appliance section into the guide groove on the lower section:

- 1 Handle
- 2 Guide pin
- 3 Dotted line (perforation in the panel)
- 4 Guide groove
- 5 Positioning aid

- Dotted line (perforation in the panel)
- Place the upper appliance section onto the lower appliance section along the dotted line.

- ► Slide the upper appliance section to the back until it is flush with the lower appliance section. If the appliance sections are joined correctly, the final position is determined by the guide groove and guide pin.
- ► Secure the tabs on the appliance front.
- Fit the insulation segment and the 4 hydraulic hoses.
- ► Connect the push-fit connectors of the 4 hydraulic connections. Ensure that the spring clips click into place.
- ► Insert the "heating sensor" into the buffer cylinder.
- ► Lay the sensor lead in the guide groove provided for this purpose in the insulation segment.

Installation

11. Installation

11.1 Positioning the equipment

- ► When positioning the appliance, observe minimum clearances (see chapter "Preparations / Installation site").
- Use the adjustable feet to compensate for any unevenness in the floor.

11.2 Heating water connection and safety valve

11.2.1 Safety instructions

Material losses

The heating system to which the appliance is connected must be installed by a qualified contractor in accordance with the water installation drawings in the technical guides.

Material losses

When fitting additional shut-off valves, install a further safety valve in an accessible location on the heat generator itself or in the flow line in close proximity to the heat generator.

There must be no shut-off valve between the heat generator and the safety valve.

Oxygen diffusion

Material losses

Avoid open heating systems and plastic pipes in underfloor heating systems which are permeable to oxygen.

In underfloor heating systems with plastic pipes that are permeable to oxygen and in open vented heating systems, oxygen diffusion may lead to corrosion on the steel components of the heating system (e.g. on the indirect coil of the DHW cylinder, on buffer cylinders, steel heating elements or steel pipes).

Material losses

The products of corrosion (e.g. rusty sludge) can settle in the heating system components and can result in a lower output or fault shutdowns due to reduced cross-sections.

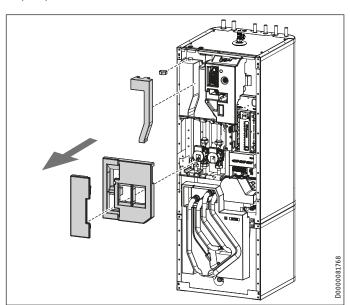
Supply lines

- ► The maximum permissible line length between the appliance and the heat pump will vary, depending on the version of the heating system (pressure drop). As a standard value, assume a maximum line length of 10 m and a pipe diameter of 22-28 mm.
- Protect the flow and return lines against frost with sufficient thermal insulation.
- ► Also protect all supply lines/cables against humidity, damage and UV radiation by means of a conduit.
- ► Connect the hydraulic connections with flat gaskets.

Pressure hoses against structure-borne sound transmission:

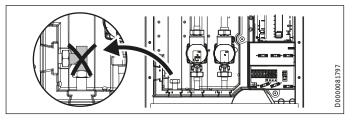
The appliance and the heat pump are connected to each other hydraulically via pipes carrying heating water. To reduce the transmission of structure-borne sound on the water side, connect the appliance to the heat pump with pressure hoses (not required for WPL 15-25 A).

Pressure differential:

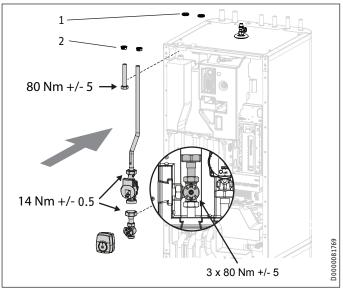

If the available external pressure difference is exceeded, the pressure drop in the heating system could result in a reduced heating output.

- ► When sizing the pipes, ensure that the available external pressure differential is not exceeded (see chapter "Specification / Data table").
- When calculating the pressure drop, take account of the flow and return lines and the pressure drop of the heat pump. The pressure drop must be covered by the available pressure differential

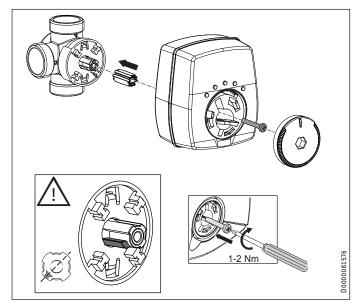
11.2.2 Fitting the pump assembly (accessory) if required

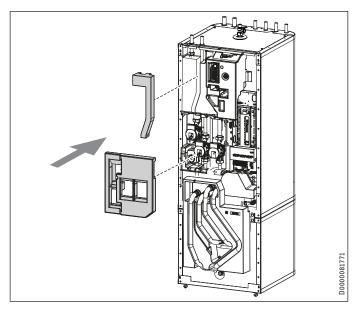

To extend the appliance with a heating circuit with mixer, you can install pump assembly HSBC-HKM (available as accessory).

- Connection pipes
- Pre-fitted contact thermostat
- Heating circuit pump
- 3-way mixer with servomotor
- 2 plastic fixing aids
- Operating and installation instructions for the heating circuit pump



- ► Remove the EPS profiles from the HSBC side.
- Remove the union nut at the mixed heating return connection.


Installation

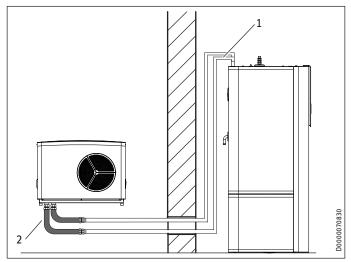

► Remove the tee at the mixed heating flow connection of the buffer cylinder.

- 1 Dummy plug
- 2 Plastic fixing aid
- ► Replace the dummy plugs with the enclosed plastic fixing aids at the mixed heating flow and return connections.
- Fit the pump assembly connection pipes.

► When installing the servomotor, ensure the drive cam is positioned correctly.

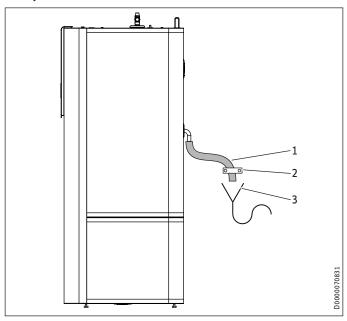
► Insert the EPS profiles on the HSBC side.

Observe the parameter settings in menu "SETTINGS / HEATING / HEATING CIRCUIT 2" in the enclosed operating and installation instructions for the heat pump manager.


Electrical connection of pump assembly

► See chapter "Installation / Electrical connection / Control voltage".

Installation


11.2.3 Connection

Installation example:

- 1 Pipes carrying heating water
- 2 Pressure hose (available as accessory)
- ► Thoroughly flush the pipes before connecting the heat pump. Foreign bodies (e.g. welding pearls, rust, sand, sealant, etc.) can impair the operational reliability of the heat pump.
- ► Install the heating water pipes (see chapter "Specification / Dimensions and connections").

Safety valve

- 1 Drain hose
- 2 Fasteners (not part of the standard delivery)
- 3 Drain (not part of the standard delivery)
- ► Size the drain hose so that water can drain off unimpeded when the safety valve is fully opened.
- Ensure that the safety valve drain hose is open to the outside.
- ► Lay the safety valve drain hose with a constant fall to the drain.
- Secure the drain hose to prevent any hose movement while water is discharged.

11.3 DHW connection and safety assembly

11.3.1 Safety instructions

(!

Material losses

The maximum permissible pressure must not be exceeded (see chapter "Specification / Data table").

Material losses

Operate the appliance only with pressure-tested taps.

l Note

The use of non-return valves in the charging circuits between the heat generator and the buffer or DHW cylinder can impair the function of the integral multifunction assembly (MFG) and lead to faults in the heating system.

Only use our standard hydraulic solutions for the installation of the appliances.

Cold water line

Galvanised steel, stainless steel, copper and plastic are approved materials.

Material losses

A safety valve is required.

DHW line, DHW circulation line

Stainless steel, copper and plastic are approved materials.

11.3.2 Installing the DHW circulation line, if applicable

A DHW circulation line with external DHW circulation pump can be fitted to the DHW circulation connection (see chapter "Specification / Dimensions and connections").

- ► Remove the sealing cap from the DHW circulation connection (see chapter "Specification / Dimensions and connections").
- ► Connect the DHW circulation line.

11.3.3 DHW connection and safety assembly

- Flush the pipes thoroughly.
- ► Install the DHW outlet line and the cold water inlet line (see chapter "Specification / Dimensions and connections"). Connect the hydraulic connections with flat gaskets.
- ► Install a type-tested safety valve in the cold water inlet line. Please note that, depending on the supply pressure, you may also need a pressure reducing valve.
- ► Size the drain pipe so that water can drain off unimpeded when the safety valve is fully opened.
- ► The safety valve discharge aperture must remain open to atmosphere.
- Install the safety valve drain pipe with a constant fall to the drain.

Installation

11.4 Filling the system

Heating circuit water quality

Carry out a fill water analysis before the system is filled. This analysis may, for example, be requested from the relevant water supply utility.

To avoid damage as a result of scaling, it may be necessary to soften or desalinate the fill water. The fill water limits specified in chapter "Specification / Data table" must always be observed.

► Recheck these limits 8-12 weeks after commissioning and during the annual system service.

Note

With a conductivity >1000 μ S/cm, desalination treatment is recommended in order to avoid corrosion.

Note

If you treat the fill water with inhibitors or additives, the same limits as for desalination apply.

Note

Suitable appliances for water softening, as well as for filling and flushing heating systems, can be obtained via trade suppliers.

Material losses

Never switch on the power before filling the system.

11.4.1 Flushing out the hot water system

Before turning on the water supply, open all taps. Allow the system to fill and flush out all flux and debris from the installation.

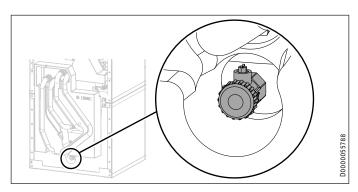
11.4.2 Filling the heating system

Note

Fill the heating system only via the lower drain valve on the buffer cylinder.

In the delivered condition, the 3-way diverter valve of the multifunction assembly is in its middle position, so that the heating circuit and the heat exchanger for DHW heating are filled evenly. When power is switched on, the 3-way diverter valve automatically switches to heating mode.

To fill or drain the system later, you must first place the 3-way diverter valve into its centre position.


To set the heat pump manager:

- ▶ With the MENU key, call up the main menu.
- ► Select the menu or value and confirm with OK:

DIAGNOSIS

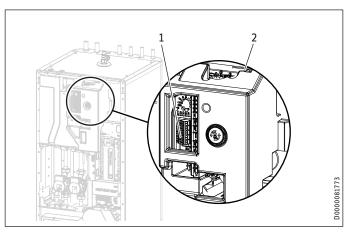
□ ■ RELAY TEST SYSTEM

□□■ DRAIN HYD

- Fill the heating system via the drain valve.
- ► Vent the pipework.

11.4.3 Filling the DHW cylinder

Material losses

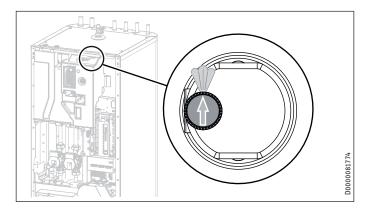

Some fluxes used to solder pipes and fittings need to be flushed out with hot water.

- ► Heat the cylinder to its normal operating temperature and flush all pipe work with hot water to ensure all flux and debris is removed from the system.
- ► Fill the DHW cylinder via the the drain valve in compliance with the UK Water Supply (Water Fittings) Regulations 1999, Section 8 G24.
- ► Open all downstream draw-off valves/taps until the appliance is full and the pipework is free of air.
- ► Adjust the flow rate. For this, observe the maximum permissible flow rate with a fully opened tap (see chapter "Specification / Data table"). If necessary reduce the flow rate at the butterfly valve of the safety assembly.
- ► Carry out a tightness check.
- ► Check the safety valve.

Power supply

11.5 Venting the appliance

► To ventilate, temporarily open the quick-action air vent valve in the multifunction assembly.


- 1 PCB
- 2 Quick-action air vent valve

Material losses

The air vent in the knurled cap of the quick-action air vent valve must not point towards the multifunction assembly PCB.

Turn the air vent in the direction shown in the following diagram.

Material losses

Close the quick-action air vent valve again after venting.

12. Power supply

WARNING Electrocution

Carry out all electrical connection and installation work in accordance with relevant regulations.

Before any work on the appliance, disconnect all poles from the power supply.

WARNING Electrocution

Only use a permanent connection to the power supply. Ensure the appliance can be separated from the power supply by an isolator that disconnects all poles with at least 3 mm contact separation. This requirement can be met with contactors, circuit breakers, fuses/MCBs, etc.

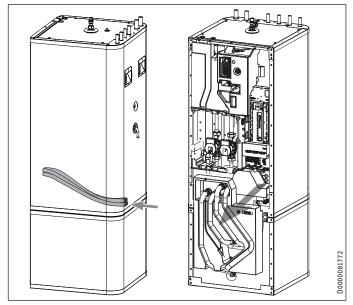
Material losses

Provide separate fuses for the two power circuits of the appliance and the control unit.

Material losses

Provide separate fuses/MCBs for the two power circuits, i.e. for the compressor and the electric emergency/booster heater circuits.

Material losses


Observe the type plate. The specified voltage must match the mains voltage.

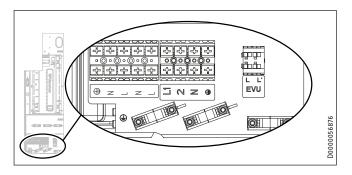
Note

Permission to connect the appliance may need to be obtained from your local power supply utility.

The terminal box of the appliance is located behind the front casing (see chapter "Preparations / Transport and handling / Removing / fitting the front casing").

- Route all power cables and sensor leads into the appliance through the cable entry.
- Connect the power cables and sensor leads as detailed below.

Power supply


Install cables with the following cross-sections in accordance with the respective fuse rating:

MCB/fuse rating	Assignment	Cable cross-section
B 16 A	Electric emergency/ booster heater (DHC)	2.5 mm ² 1.5 mm ² when routing a multi-core cable on a wall or in an electrical conduit on a wall
B 16 A	Control unit	1.5 mm ²

12.1 Electric emergency/booster heater and control voltage

Appliance function	Effect of the electric emergency/booster heater			
Mono energetic operation	If the heat pump undershoots the dual mode point, the electric emergency/booster heater safeguards both the heating operation and the delivery of high DHW temperatures.			
Emergency mode	Should the heat pump suffer a fault that prevents its continued operation, the heating output will be covered by the electric emergency/booster heater.			

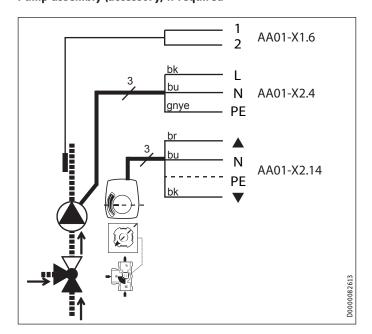
Electrical connection

XDO2 Electric emergency/booster heater (DHC)

Connected load	Cable cross-section	Terminal assignment				t
2.9 kW	2.5 mm ²	PE			N	L
5.9 kW	2.5 mm ²	PE			N	_ <u>L</u>
	2.5 mm ²	PE	N	L		

► Connect the cables for the electrical emergency/booster heater with the desired rating as in the table.

Control voltage



Material losses

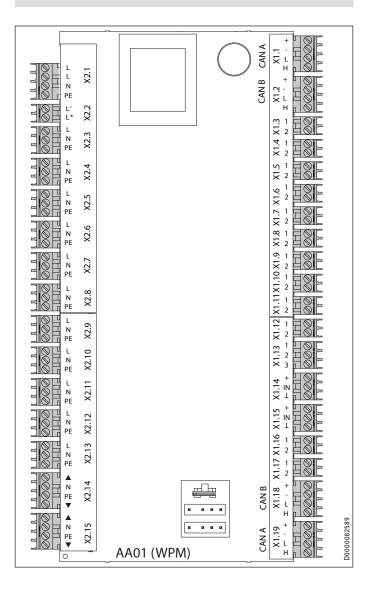
► Only connect energy efficient circulation pumps approved by us to the pump connections.

XD01.2	Heat pum	o enable signal
	EVU	Enable signal

Pump assembly (accessory) if required

Power supply

Heat pump manager terminal assignment



WARNING Electrocution

Only components that operate with safety extra low voltage (SELV) and that ensure secure separation from the mains voltage supply may be connected to the low voltage terminals of the appliance.

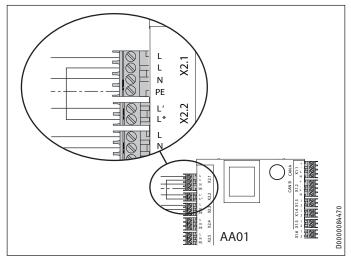
Connecting other components can make parts of the appliance and connected components live.

Only use components which have been approved by us.

Safety	extra low vol	tage	
X1.1	+	+	CAN (connection for heat pump and WPE heat
CAN A	-	-	pump extension)
	L	L	
	_ <u>H</u>	_ <u>H</u> _	
X1.2	+	+	CAN (connection for FET remote control and
CAN B	- L	- L	ISG Internet Service Gateway)
	Н	Н	
X1.3	Signal	- : 1	Outside temperature sensor
7(1.5	Earth	2	outside temperature sensor
X1.4	Signal	1	Buffer sensor (heating circuit sensor 1)
	Earth	2	,
X1.5	Signal	1	Flow sensor
	Earth	22	
X1.6	Signal	1	Heating circuit sensor 2
	Earth	_ 2	
X1.7	Signal	1	Heating circuit sensor 3
	Earth	_ 2	
X1.8	Signal	1	DHW cylinder sensor
V4.0	Earth	_ 2	
X1.9	Signal Earth	1 2	Source sensor
X1.10	Signal	$-\frac{2}{1}$	Heat generator 2
Λ1.10	Earth	2	near generator 2
X1.11	Signal	_ _	Cooling flow
,,,,,,,	Earth	2	2003
X1.12	Signal	1	DHW circulation sensor
	Earth	2	
X1.13	Signal	1	FE7 remote control / telephone remote
	Earth	2	switch / heating curve optimisation / SG Ready
	Signal	_ 3	
X1.14	Constant 12 V	+	Analogue input 0-10 V
	Input GND	IN	
X1.15	Constant 12 V	- +	Analogue input 0-10 V
X1.15	Input	IN	Allalogue Iliput 0-10 V
	GND	Ϊ	
X1.16	Signal	1	PWM output 1
	Earth	2	
X1.17	Signal	1	PWM output 2
	Earth	_ 2	
X1.18	+	+	CAN (connection for FET remote control and
CAN B	-	-	ISG Internet Service Gateway)
	L H	L H	
X1.19	- "	_ _ _	CAN (connection for heat numb and WDF back
CAN A	-	-	CAN (connection for heat pump and WPE heat pump extension)
CANA A	L	L	pamp extension,
	-	_	

Power supply

Mains	voltage		
X2.1	L L N PE	L L N	Power supply
X2.2	L' (power supply utility input)	Ľ	L' (power supply utility input)
	L* (pumps L)	L* (pumps L)	L* (pumps L)
X2.3	L N PE	L N PE	Heating circuit pump 1
X2.4	L N PE	L N PE	Heating circuit pump 2
X2.5	L N PE	L N ⊕ PE	Heating circuit pump 3
X2.6	L N PE	L N PE	Buffer charging pump 1
X2.7	L N PE	L N ⊕ PE	Buffer charging pump 2
X2.8	L N PE	L N ⊕ PE	DHW charging pump
X2.9	L N PE	L N PE	Source pump/defrost
X2.10	L N PE	L N ⊕ PE	Fault output
X2.11	L N PE	L N PE	DHW circulation pump / 2nd heat source DHW
X2.12	L N PE	L N ⊕ PE	2nd heat source heating
X2.13	L N PE	L N ⊕ PE	Cooling
X2.14	Mixer OPEN N PE Mixer CLOSE	N ⊕ PE ▼	Mixer heating circuit 2 (X2.14.1 Mixer OPEN X2.14.2 Mixer CLOSE)
X2.15	Mixer OPEN N PE Mixer CLOSE	N ⊕ PE	Mixer heating circuit 3 (X2.15.1 Mixer OPEN X2.15.2 Mixer CLOSE)

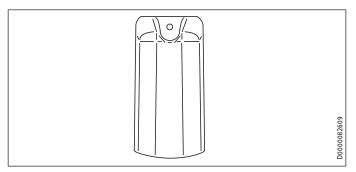

Note

For every appliance fault, output X2.10 issues a 230 V signal.

In the case of temporary faults, the output switches the signal through for a specific time.

In the case of faults that result in a permanent appliance shutdown, the output switches through permanently.

If required, STB-FB high limit safety cut-out accessory for underfloor heating systems


- ► Remove the jumper at AA 01 between X 2.1 (L) and X 2.2 (L*).
- ► Connect the STB-FB high limit safety cut-out to AA 01 between X 2.1 (L) and X 2.2 (L*).

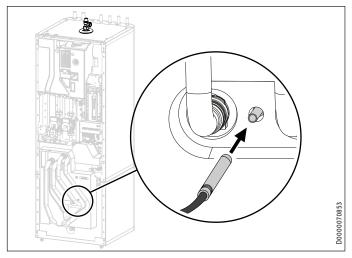
Power supply

12.2 Sensor installation

12.2.1 Outside temperature sensor AF PT

The outside temperature sensors have a significant influence on the function of your heating system. Therefore ensure that the outside temperature sensors are correctly positioned and well insulated.

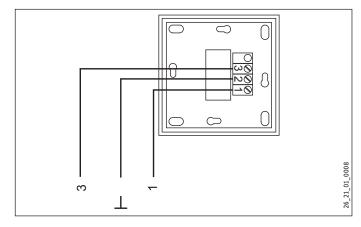
- Install the outside temperature sensor on a north or north-eastern wall.
- Ensure that the outside temperature sensor is freely exposed to the elements but not placed in direct sunlight.
- Never mount the outside temperature sensor above windows, doors or air ducts.
- Observe the following minimum clearances: 2.5 m above the ground and 1 m to the side of windows and doors


Installation

- ► Remove the cover.
- ► Secure the base with the screw supplied.
- ► Connect the outside temperature sensor to AA01-X1.3.
- ▶ Replace the cover. The cover must audibly click into place.

12.2.2 Fitting the temperature sensor (accessory) for area cooling

Area cooling requires the fitting of a temperature sensor, available as an accessory.


► Remove the front casing (see chapter "Preparations / Transport and handling / Removing / fitting the front casing").

- ► Insert the temperature sensor into the sensor well "Sensor heat pump cooling, optional".
- ► Connect the temperature sensor to AA01-X1.11.

12.3 Remote control

12.3.1 FE 7 remote control

With the FE 7 remote control you can adjust the set room temperature for heating circuit 1 or heating circuit 2 by \pm 5 °C in automatic mode only. You can also select the operating mode.

► Connect the remote control to terminal AA01-X1.13.

Commissioning

12.3.2 FET remote control

With the FET remote control you can select the operating mode and change the set room temperature for heating circuit 1 or heating circuit 2 by ± 5 °C.

► Connect the remote control to terminal AA01-X1.2.

13. Commissioning

Our customer support can assist with commissioning, which is a chargeable service.

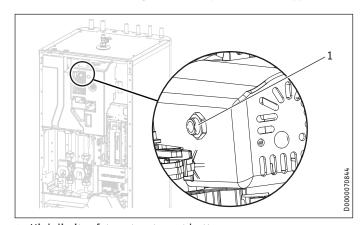
If the appliance is intended for commercial use, observe the rules of the relevant Health & Safety at Work Act during commissioning. For further details, check with your local authorising body.

13.1 Checks before commissioning the heat pump manager

Material losses

Observe the maximum system temperature in underfloor heating systems.

- ► Check that the heating system is filled to the correct pressure and the quick-action air vent valve is closed.
- ► Check whether the outside temperature sensor is correctly placed and connected.
- ► Check whether the power supply is connected correctly.
- ► Check whether the signal cable to the heat pump (bus cable) is correctly connected.


High limit safety cut-out

Note

At temperatures below -15 °C the high limit safety cut-out may respond. The appliance may be subjected to these temperatures during storage or transport.

► Check whether the high limit safety cut-out has tripped.

1 High limit safety cut-out reset button

13.2 Commissioning the heat pump manager

Commission the heat pump manager and make all settings in accordance with the operating and installation instructions for the heat pump manager.

Note
For DHW mode, ensure that the PARALLEL OPERATION option is set in the heat pump manager. With this setting the primary pump is also active in DHW mode.

To set the heat pump manager:

- ▶ With the MENU key, call up the main menu.
- ► Select the menu or value and confirm with OK:

Value
PARALLEL OPERATION

On appliances with a single phase connection, set the heat pump manager as follows for calculating the amount of heat.

To set the heat pump manager:

- ▶ With the MENU key, call up the main menu.
- ► Select the menu or value and confirm with OK:

■ SETTINGS	Value
□■HEATING	
□□■ ELECTRIC REHEATING	
□□□■ NUMBER OF STAGES	2

Area cooling setting

Material losses

Condensation caused by the temperature falling below the dew point can lead to material losses. HSBC is therefore exclusively approved for area cooling.

Adjusting the heat pump manager settings for area cooling:

- ▶ With the MENU key, call up the main menu.
- ► Select the menu or value and confirm with OK:

■ SETTINGS	Value
□ ■ COOLING	
□□■ COOLING	ON
□□■ STANDARD SETTING	
□□□■ COOLING CAPACITY	system specific
□□■ ACTIVE COOLING	
□□□■ AREA COOLING	ON
□□□□■ SET FLOW TEMPERATURE	system specific
□□□□■ FLOW TEMP HYSTERESIS	system specific
□□□□■ SET ROOM TEMPERATURE	system specific

Commissioning

13.3 Circulation pumps Wilo-Para .../Sc

Indicator lights (LEDs)

	Signal display: LED is lit up in green in normal operation LED lights up/flashes in case of a fault
	Display of selected control mode Δp-v, Δp-c and constant speed
- = = • • •	Display of selected pump curve (I, II, III) within the control mode
	LED indicator combinations during the pump venting function, manual restart and key lock
_ = =	

Operating button

Press

Select control mode Select pump curve (I, II, III) within the control mode

Press and hold

Activate the pump venting function (press for 3 seconds) Activate manual restart (press for 5 seconds) Lock/unlock button (press for 8 seconds)

Control modes and functions

Variable differential pressure ∆p-v (I, II, III)

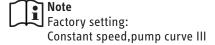
Recommended for two-pipe heating systems with radiators to reduce the flow noise at thermostatic valves.

The pump reduces the delivery head to half in the case of decreasing volume flow in the pipe network. Electrical energy saving by adjusting the delivery head to the volume flow requirement and lower flow rates. There are three pre-defined pump curves (I, II, III) to choose from.

Constant differential pressure ∆p-c (I, II, III)

Recommended for underfloor heating for large-sized pipes or all applications without a variable pipe network curve (e.g. storage charge pumps), as well as single-pipe heating systems with radiators.

The control keeps the set delivery head constant irrespective of the pumped volume flow.


There are three pre-defined pump curves (I, II, III) to choose from.

Constant speed (I, II, III)

Recommended for systems with fixed system resistance requiring a constant volume flow.

The pump runs in three prescribed fixed speed stages (I, II, III).

Venting

Fill and vent the system correctly.

If the pump does not vent automatically: Activate the pump venting function via the operating button: press and hold for 3 seconds, then release. The pump venting function is initiated and lasts 10 minutes.

The top and bottom LED rows flash in turn at 1 second intervals.

To cancel, press and hold the operating button for 3 seconds.

Note

After venting, the LED display shows the previously set values of the pump.

Setting the control mode

Select control mode

The LED selection of control modes and corresponding pump curves takes place in clockwise succession.

Press the operating button briefly (approx. 1 second). LEDs display the set control mode and pump curve.

The following shows the various possible settings:

Operating button	LED-Display	Control mode	Pump curve
1x	- 5 5	Constant speed	II
2x		Constant speed	I
3x		Variable differential pressure Δp-v	III
4x	- = = = = = = = = = = = = = = = = = = =	Variable differential pressure Δp-v	II
5x		Variable differential pressure Δp-v	I
6x		Constant differential pressure Δp-c	III
7x		Constant differential pressure Δp-c	II
8x		Constant differential pressure Δp-c	I
*9x		Constant speed	III

(*) Pressing the button for the 9th time returns to the basic setting (constant speed / characteristic curve III).

Shutdown

13.4 Appliance handover

- Explain the appliance function to users and familiarise them with its operation.
- ► Make users aware of potential dangers.
- ► Hand over these instructions.

14. Shutdown

Material losses

Observe the temperature application limits and the minimum circulation volume on the heat consumer side (see chapter "Specification / Data table").

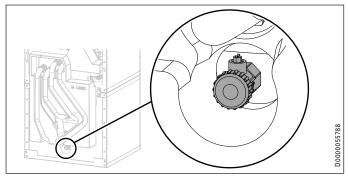
Material losses

If the heat pump and frost protection are completely switched off, drain the system (see chapter "Maintenance / Draining the DHW cylinder").

► If you take the system out of use, set the heat pump manager to standby so that the safety functions that protect the appliance (e.g. frost protection) remain active.

15. Maintenance

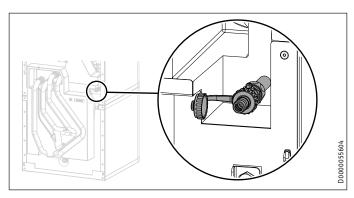
WARNING Electrocution


Carry out all electrical connection and installation work in accordance with relevant regulations.

WARNING Electrocution

Before any work on the appliance, disconnect all poles of the appliance from the power supply.

Draining the buffer cylinder


▶ Drain the buffer cylinder via the drain valve.

Draining the DHW cylinder

CAUTION Burns Hot water may escape during draining.

- ► Close the shut-off valve in the cold water inlet line.
- ▶ Open the hot water taps on all draw-off points.

▶ Drain the DHW cylinder via the drain valve.

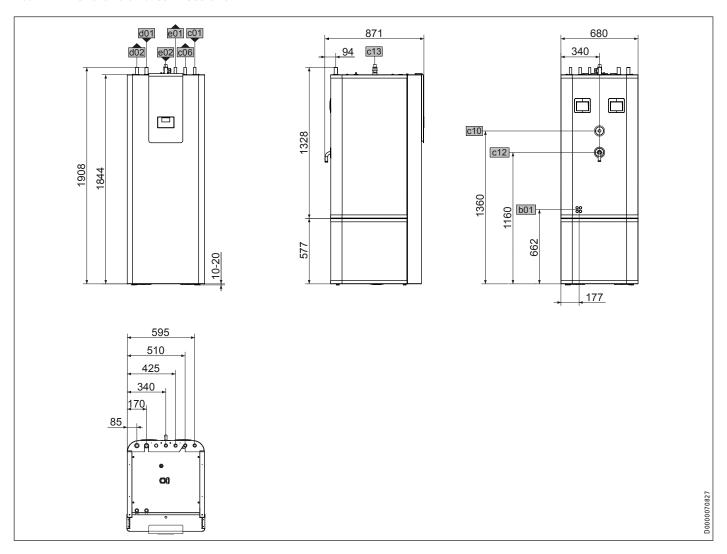
Cleaning and descaling the DHW cylinder

Material losses

Never use descaling pumps or descaling agents to clean the cylinder.

► Clean the appliance through the inspection flange.

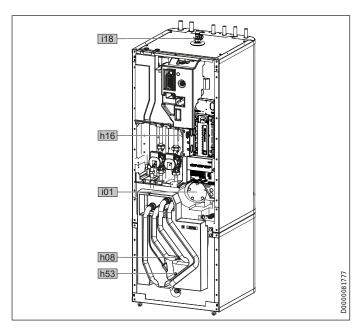
For the torque of the flange screws, see chapter "Specification / Dimensions and connections".


Replacing the signal anode

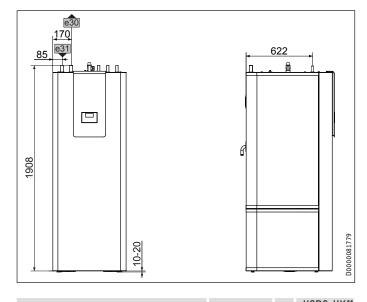
▶ Replace the signal anode if it becomes depleted.

Specification

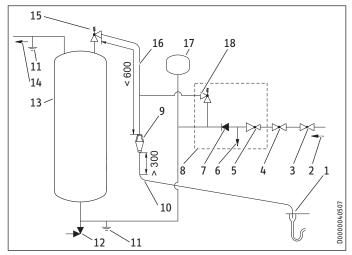
16. Specification


16.1 Dimensions and connections

			HSBC 200 S (GB)
Entry electrical cables			
Cold water inlet	Diameter	mm	22
DHW outlet	Diameter	mm	22
Safety assembly drain	Diameter	mm	22
T&P valve			
Heat pump flow	Diameter	mm	28
Heat pump return	Diameter	mm	28
Heating flow	Diameter	mm	22
Heating return	Diameter	mm	22
	Cold water inlet DHW outlet	Cold water inlet Diameter DHW outlet Diameter Safety assembly drain Diameter T&P valve Heat pump flow Diameter Heat pump return Diameter Heating flow Diameter	Cold water inlet Diameter mm DHW outlet Diameter mm Safety assembly drain Diameter mm T&P valve T&P valve Heat pump flow Diameter mm Heat pump return Diameter mm Heating flow Diameter mm


Specification

Further dimensions and connections


				HSBC 200 S (GB)
h08	Sensor heat pump cooling, optional	Diameter	mm	9.5
h16	Sensor DHW	Diameter	mm	9.5
h53	Sensor heating	Diameter	mm	9.5
i01	Flange	Diameter	mm	140
		Pitch circle diameter	mm	120
		Screws		M 10
		Torque	Nm	55
i18	Protective anode			

16.1.1 HSBC-HKM accessories

				HSBC-HKM
e30	Heating flow, mixed	Diameter	mm	22
e31	Heating return, mixed	Diameter	mm	22

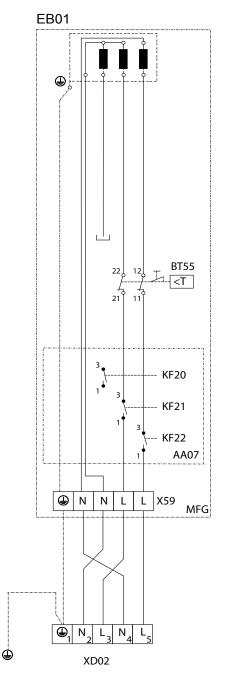
16.2 Hydraulic diagram

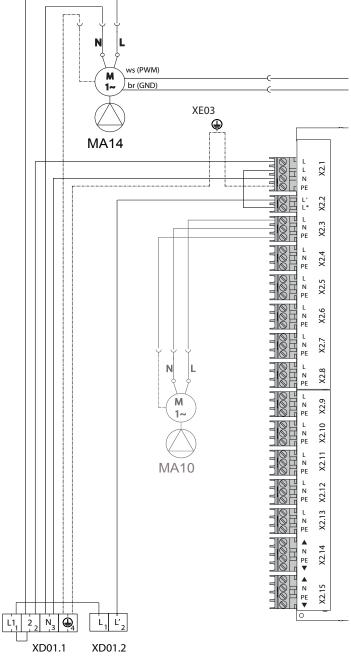
- Discharge below fixed grate
- Cold water supply
- 3 Shut-off valve
- 4 Line strainer
- Pressure reducing valve
- 6 Balanced pressure; cold water outlet
- Check valve
- 8 Safety assembly
- 9 Tundish
- 10 Metal discharge pipe (D2) from tundish, with continuous fall
- 11 Equipotential bond
- 12 Drain valve
- 13 Cylinder
- 14 DHW outlet
- 15 T&P valve
- 16 Metal discharge pipe (D1) from T&P valve to tundish
- 17 Expansion vessel
- 18 Expansion relief valve

Material losses

The tundish should be installed away from electrical devices.

Note
If secondary return circuits are used then an additional expansion vessel may be required.

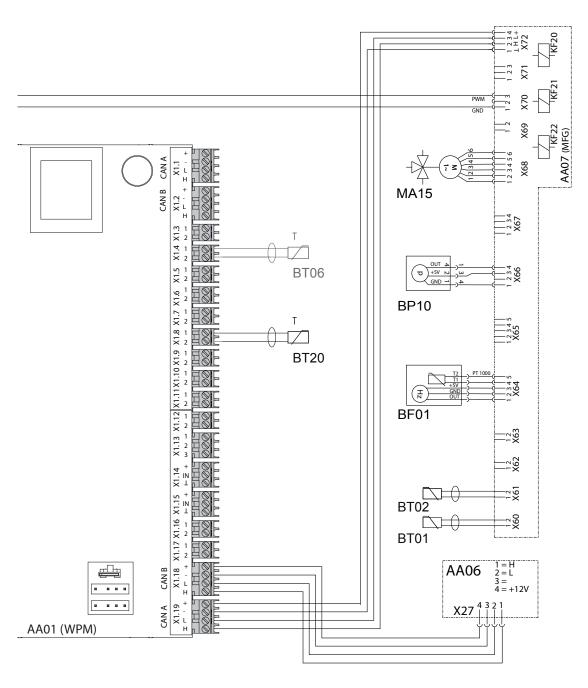

Data table


Minimum size of discharge pipe D1	mm			15
Minimum size of discharge pipe D2 from tundish	mm	22	28	35
Maximum permissible pressure drop, expressed as a length of straight pipe (i.e. no elbows or bends)	m	9	18	27
Pressure drop of each elbow or bend	m	0.8	1.0	1.4

Connection dimensions		
Safety assembly connection	mm	22
Expansion valve end connection	mm	15
Expansion vessel connection, male, BSP		G 1 A
Tundish inlet connection	mm	22
Tundish outlet connection		G 1

Specification

16.3 Wiring diagram



AA01	Extra low voltage (WPM heat pump manager)
AA06	Programming unit
AA07	PCB, booster heater MFG
EB01	Booster heater MFG (not for HSBB/HSBC 200 S BE)
BF01	Flow rate and temperature, heating circuit
BP10	Pressure sensor, heating circuit
BT01	Temperature sensor, heat pump flow
BT02	Temperature sensor, heat pump return
BT06	Temperature sensor, heat pump buffer cylinder (not for HSBB or TSBB eco)
BT20	Temperature sensor, DHW cylinder
BT55	High limit safety cut-out MFG (manual reset)
MA10	Motor, heating circuit pump (not for HSBB or TSBB eco)
MA14	Motor, buffer charging pump (PWM/1-10V)
MA15	Motor, diverter valve, heating/DHW

KF20	Relay, booster heater MFG
KF21	Relay, booster heater MFG
KF22	Relay, booster heater MFG
XD01.1	Terminal, power supply
XD01.2	Terminal, power-OFF contact
XD02	Terminal, MFG power supply
XE03	Earth terminal, control unit
AA01-X1.1	Connector, CAN A (WP connection)
AA01-X1.2	Connector, CAN B (FET/ISG connection)
AA01-X1.3	Connector, outside temperature sensor
AA01-X1.4	Connector, buffer temperature sensor BT06 (not for HSBB or TSBB eco)
AA01-X1.5	Connector, flow temperature sensor
AA01-X1.6	Connector, heating circuit temperature sensor 2

Specification

AA01-X1.7 Connector, heating circuit temperature sensor 3 AA07-X62 Not assigned - connector, temperature sensor, heat pump return AA01-X1.8 Connector, DHW cylinder sensor BT20 AA07-X63 Not assigned - connector, temperature sensor, DHW cylinder, internal AA01-X1.9 Connector, source sensor AA07-X64 Connector, temperature and flow rate, heating circuit, BF01 AA01-X1.10 Connector, heat source 2 AA07-X65 Not assigned AA01-X1.11 Connector, flow, cooling AA07-X66 Rast 2.5 connector (heating system pressure) BP01 AA01-X1.12 Connector, DHW circulation sensor AA07-X67 AA01-X1.13 Connector, remote control FE7 AA07-X68 Connector, switching, motor, diverter valve central heating / AA01-X1.14 Connector, analogue input 0-10 V DHW AA01-X2.14 Connector, mixer, heating circuit 2 AA07-X69 Not assigned (X2.14.1 Mixer OPEN/X2.14.2 Mixer CLOSE) AA07-X70 Connector, switching, pump, heating circuit PWM/1-10V AA01-X2.15 Connector, mixer, heating circuit 3 (X2.15.1 Mixer OPEN/X2.15.2 Mixer CLOSE) AA07-X71 Not assigned AA06-X27 Terminal, programming unit AA07-X72 Connector, CAN bus AA07-X60 Connector, temperature sensor, heat pump flow BT01 EB01-X59 Terminal, MFG AA07-X61 Connector, temperature sensor, heat pump return BT02

Specification

16.4 Details on energy consumption

Product datasheet: Hot water storage tanks to regulation (EU) no. 812/2013 / (S.I. 2019 No. 539 / Schedule 2)

Troduct datasheed frot water storage tanks to regulation (20) not 012/2015	, ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	2015 No. 3357 Schedule 2,
		HSBC 200 S (GB) set
		236917
Manufacturer		STIEBEL ELTRON
Model identification of the supplier		HSBC 200 S (GB) Set
Energy efficiency class		В
standing loss S	W	55
storage volume V		189

16.5 Data table

Manipal capacity, DHW cylinder			HSBC 200 S (GB) set
Hydraulic data Nominal capacity, DHW cylinder Nominal capacity, Unifer cylinder 1 105 Surface, indirect coil m² 3.3. Content, indirect coil 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2			
Nominal capacity, DHW cylinder 1 168	Hydraulic data		230717
Nominal capacity, buffer cylinder Surface, indirect coil m² 3.3. Content, indirect coil External available pressure differential, circulation pump / heat pump at 1.0 m³/h h hPa 655 External available pressure differential, circulation pump / heat pump at 1.5 m³/h hPa 525 External available pressure differential, circulation pump / heat pump at 1.5 m³/h hPa 216 External available pressure differential, circulation pump / heating circuit 1 at 1.0 m³/h hPa 217 External available pressure differential, circulation pump / heating circuit 1 at 1.5 m³/h hPa 665 External available pressure differential, circulation pump / heating circuit 1 at 1.5 m³/h hPa 666 External available pressure differential, circulation pump / heating circuit 1 at 1.5 m³/h hPa 666 External available pressure differential, circulation pump / heating circuit 1 at 1.5 m³/h hPa 667 External available pressure differential, circulation pump / heating circuit 2 (optional) at 1.0 m³/h hPa 668 External available pressure differential, circulation pump / heating circuit 2 (optional) at 1.5 m³/h hPa 67 External available pressure differential, circulation pump / heating circuit 2 (optional) at 1.5 m³/h hPa 686 External available pressure differential, circulation pump / heating circuit 2 (optional) at 1.5 m³/h hPa 687 External available pressure differential, circulation pump / heating circuit 2 (optional) at 1.5 m³/h hPa 688 External available pressure differential, circulation pump / heating circuit 2 (optional) at 1.5 m³/h hPa 688 External available pressure differential, circulation pump / heating circuit 2 (optional) at 1.5 m³/h hPa 688 External available pressure differential, circulation pump / heating circuit 2 (optional) at 1.5 m³/h hPa 688 External available pressure differential, circulation pump / heating circuit 2 (optional) at 1.5 m³/h hPa 688 External available pressure differential, circulation pump / heating circuit at 2.0 m³/h hPa 688 External available pressure differential, circulation pump / heating circuit at	,		168
Surface, indirect coil m² 3.3. Content, indirect coil i 271 Content, indirect coil i 271 Content, indirect coil i 271 External available pressure differential, circulation pump / heat pump at 1.0 m³/h hPa 522 External available pressure differential, circulation pump / heat pump at 2.0 m³/h hPa 522 External available pressure differential, circulation pump / heat pump at 2.0 m³/h hPa 272 External available pressure differential, circulation pump / heating circuit 1 at 1.0 m³/h hPa 663 External available pressure differential, circulation pump / heating circuit 1 at 1.5 m³/h hPa 663 External available pressure differential, circulation pump / heating circuit 1 at 1.0 m³/h hPa 664 External available pressure differential, circulation pump / heating circuit 1 at 2.0 m³/h hPa 665 External available pressure differential, circulation pump / heating circuit 2 (optional) at 1.0 m³/h hPa 665 External available pressure differential, circulation pump / heating circuit 2 (optional) at 1.0 m³/h hPa 665 External available pressure differential, circulation pump / heating circuit 2 (optional) at 1.0 m³/h hPa 188 External available pressure differential, circulation pump / heating circuit 2 (optional) at 1.0 m³/h hPa 188 External available pressure differential, circulation pump / heating circuit 2 (optional) at 2.0 m³/h hPa 188 External available pressure differential, circulation pump / heating circuit 2 (optional) at 2.0 m³/h hPa 188 External available pressure differential, circulation pump / heating circuit 2 (optional) at 1.5 m³/h hPa 188 External available pressure differential, circulation pump / heating circuit 2 (optional) at 1.5 m³/h hPa 188 External available pressure differential, circulation pump / heating circuit 2 (optional) at 1.5 m³/h hPa 188 External available pressure differential, circulation pump / heating circuit 2 (optional) at 1.5 m³/h hPa 188 External available pressure differential, circulation pump / heating circui		<u></u>	100
Content, indirect coil External available pressure differential, circulation pump / heat pump at 1.0 m³/h hp²a 656 External available pressure differential, circulation pump / heat pump at 1.5 m³/h hp²a 210 External available pressure differential, circulation pump / heat pump at 2.0 m³/h hp²a 210 External available pressure differential, circulation pump / heating circuit 1 at 1.0 m³/h hp²a 210 External available pressure differential, circulation pump / heating circuit 1 at 1.0 m³/h hp²a 663 External available pressure differential, circulation pump / heating circuit 1 at 1.0 m³/h hp²a 663 External available pressure differential, circulation pump / heating circuit 2 (optional) at 1.0 m³/h hp²a 666 External available pressure differential, circulation pump / heating circuit 2 (optional) at 1.5 m³/h hp²a 518 External available pressure differential, circulation pump / heating circuit 2 (optional) at 1.5 m³/h hp²a 518 External available pressure differential, circulation pump / heating circuit 2 (optional) at 2.0 m³/h hp²a 518 External available pressure differential, circulation pump / heating circuit 2 (optional) at 2.0 m³/h hp²a 518 External available pressure differential, circulation pump / heating circuit 2 (optional) at 2.0 m³/h hp²a 518 External available pressure differential, circulation pump / heating circuit 2 (optional) at 2.0 m³/h hp²a 518 External available pressure differential, circulation pump / heating circuit 2 (optional) at 2.0 m³/h hp²a 518 External available pressure differential, circulation pump / heating circuit 2 (optional) at 2.0 m³/h hp²a 518 External available pressure differential, circulation pump / heating circuit 2 (optional) at 2.0 m³/h hp²a 518 External available pressure differential, circulation pump / heating circuit 2 (optional) at 2.0 m³/h hp²a 518 External available pressure differential, circulation pump hp²a 518 External available pressure differential, circulation pump hp²a 518 External available pressure differential, circulation pump hp²a 518 External available pre			3.3
External available pressure differential, circulation pump / heat pump at 1.0 m³/h h?a 557 External available pressure differential, circulation pump / heat pump at 1.5 m³/h h?a 557 External available pressure differential, circulation pump / heat pump at 2.0 m³/h h?a 210 External available pressure differential, circulation pump / heat pump at 2.0 m³/h h?a 755 External available pressure differential, circulation pump / heating circuit 1 at 1.0 m³/h h?a 665 External available pressure differential, circulation pump / heating circuit 1 at 1.5 m³/h h?a 665 External available pressure differential, circulation pump / heating circuit 1 at 1.5 m³/h h?a 665 External available pressure differential, circulation pump / heating circuit 1 at 2.0 m³/h h?a 665 External available pressure differential, circulation pump / heating circuit 2 (optional) at 1.0 m³/h h?a 665 External available pressure differential, circulation pump / heating circuit 2 (optional) at 1.0 m³/h h?a 665 External available pressure differential, circulation pump / heating circuit 2 (optional) at 1.0 m³/h h?a 665 External available pressure differential, circulation pump / heating circuit 2 (optional) at 2.0 m³/h h?a 665 External available pressure differential, circulation pump / heating circuit 2 (optional) at 2.0 m³/h h?a 1.89 External available pressure differential, circulation pump / heating circuit 2 (optional) at 2.0 m³/h h?a 1.89 External available pressure differential, circulation pump / heating circuit 2 (optional) at 2.0 m³/h h?a 1.89 External available pressure differential, circulation pump / heating circuit 2 (optional) at 1.0 m³/h h?a 1.89 External available pressure differential, circulation pump / heating circuit 2 (optional) at 1.0 m³/h h?a 1.89 External available pressure differential, circulation pump heating circuit 2 (optional) at 1.0 m³/h h?a 1.89 External available pressure differential, circulation pump pump pump differential, circulation pump heating circuit 2 (optional) at 1.0 m³/h h?a 1.0 m³/h h?a 1.0 m³/h h?a 1.0 m³/h h?	<u> </u>		21
External available pressure differential, circulation pump / heat pump at 1.5 m³/h External available pressure differential, circulation pump / heat pump at 2.0 m³/h hPa 210 External available pressure differential, circulation pump / heating circuit 1 at 1.0 m³/h hPa 723 External available pressure differential, circulation pump / heating circuit 1 at 1.0 m³/h hPa 663 External available pressure differential, circulation pump / heating circuit 1 at 1.0 m³/h hPa 665 External available pressure differential, circulation pump / heating circuit 2 (optional) at 1.0 m³/h hPa 665 External available pressure differential, circulation pump / heating circuit 2 (optional) at 1.0 m³/h hPa 665 External available pressure differential, circulation pump / heating circuit 2 (optional) at 1.0 m³/h hPa 518 External available pressure differential, circulation pump / heating circuit 2 (optional) at 1.5 m³/h hPa 518 External available pressure differential, circulation pump / heating circuit 2 (optional) at 1.5 m³/h hPa 188 Hot water volume > 40°C I 14/7.1 Primary heating water afflow rate, upper indirect coil kW - I/min 33.1 15.2 Primary heating water input power afflow rate, upper indirect coil kW - I/min 33.1 15.2 Pressure drop at 1.0 m³/h, indirect coil, top hPa 2es Reheating time, upper indirect coil min 12.4 Max. opermissible pressure (Design Pressure) DHW cylinder Max. permissible pressure (Design Pressure) DHW cylinder Max. permissible pressure (Design Pressure) DHW cylinder Max. permissible pressure (Design Pressure) buffer tank Max. permissible pressure (Design Pressure) Test pressure, DHW cylinder MPa 0.3 Test pressure, buffer cylinder MPa 0.4 Max. permissible pressure (Design Pressure) Water hardness "C 88 Heating water quality requirements Water hardness "C 89 H value (with aluminium compounds) Design Pressure (Design Pressure) Water hardness "C 89 H value (with uluminium compounds) Ro-9.5/cm 20-0.00 Conductivity (desalinating) My 60 Max. power consumption, charging pump W 60 Max. power consumption, cha			656
External available pressure differential, circulation pump / heat pump at 2.0 m³/h External available pressure differential, circulation pump / heating circuit 1 at 1.5 m³/h hPa 652 External available pressure differential, circulation pump / heating circuit 1 at 1.5 m³/h hPa 663 External available pressure differential, circulation pump / heating circuit 1 at 2.0 m³/h hPa 664 External available pressure differential, circulation pump / heating circuit 1 at 2.0 m³/h hPa 665 External available pressure differential, circulation pump / heating circuit 2 (optional) at 1.0 m³/h hPa 518 External available pressure differential, circulation pump / heating circuit 2 (optional) at 1.5 m³/h hPa 188 External available pressure differential, circulation pump / heating circuit 2 (optional) at 2.0 m³/h hPa 188 External available pressure differential, circulation pump / heating circuit 2 (optional) at 2.0 m³/h hPa 188 External available pressure differential, circulation pump / heating circuit 2 (optional) at 2.0 m³/h hPa 188 External available pressure differential, circulation pump / heating circuit 2 (optional) at 2.0 m³/h hPa 188 External available pressure differential, circulation pump / heating circuit 2 (optional) at 2.0 m³/h hPa 188 External available pressure differential, circulation pump / heating circuit 2 (optional) at 2.0 m³/h hPa 188 External available pressure differential, circulation pump / heating circuit 2 (optional) at 1.5 m³/h hPa 188 External available pressure differential, circulation pump / heating circuit 2 (optional) at 1.5 m³/h hPa 188 External available pressure differential, circulation pump / heating circuit 2 (optional) at 1.5 m³/h hPa 188 External available pressure differential, circulation pump / heating circuit 2 (optional) at 1.5 m³/h hPa 188 External available pressure differential, circulation pump / heating circuit 2 (optional) at 1.5 m³/h hPa 188 External available pressure differential, circulation pump / heating circuit 2 (optional) at 1.5 m³/h hPa 189 External available pressure			527
External available pressure differential, circulation pump / heating circuit 1 at 1.0 m³/h hPa 725 External available pressure differential, circulation pump / heating circuit 1 at 1.5 m³/h hPa 665 External available pressure differential, circulation pump / heating circuit 1 at 2.0 m³/h hPa 444 External available pressure differential, circulation pump / heating circuit 2 (optional) at 1.0 m³/h hPa 665 External available pressure differential, circulation pump / heating circuit 2 (optional) at 1.5 m³/h hPa 518 External available pressure differential, circulation pump / heating circuit 2 (optional) at 1.5 m³/h hPa 188 Hot water volume > 40°C		hPa	210
External available pressure differential, circulation pump / heating circuit 1 at 1.5 m³/h hpa 663 External available pressure differential, circulation pump / heating circuit 1 at 2.0 m³/h hpa 444 External available pressure differential, circulation pump / heating circuit 2 (optional) at 1.0 m³/h hpa 665 External available pressure differential, circulation pump / heating circuit 2 (optional) at 1.0 m³/h hpa 518 External available pressure differential, circulation pump / heating circuit 2 (optional) at 1.0 m³/h hpa 188 External available pressure differential, circulation pump / heating circuit 2 (optional) at 1.0 m³/h hpa 188 External available pressure differential, circulation pump / heating circuit 2 (optional) at 1.0 m³/h hpa 188 External available pressure differential, circulation pump / heating circuit 2 (optional) at 1.0 m³/h hpa 188 External available pressure differential, circulation pump / heating circuit 2 (optional) at 1.0 m³/h hpa 188 External available pressure differential, circulation pump / heating circuit 2 (optional) at 1.0 m³/h hpa 188 External available pressure differential, circulation pump / heating circuit 2 (optional) at 1.0 m³/h hpa 188 External available pressure differential, circulation pump / heating circuit 2 (optional) at 1.0 m³/h hpa 188 External available pressure differential, circulation pump / heating circuit 2 (optional) at 1.0 m³/h hpa 188 External available pressure differential, circulation pump / heating circuit 2 (optional) at 1.0 m³/h hpa 188 External available pressure differential, circulation pump / heating circuit 2 (optional) at 1.0 m³/h hpa 188 External available pressure differential, circulation pump / heating circuit 2 (optional) at 1.0 m³/h hpa 188 External available pressure differential, circulation pump heating circuit 2 (optional) at 1.0 m³/h hpa 188 External available pressure differential, circulation pump heating circuit 2 (optional) at 1.0 m³/h hpa 1.5 m²/h pa			725
External available pressure differential, circulation pump / heating circuit 1 at 2.0 m³/h hpa 444 External available pressure differential, circulation pump / heating circuit 2 (optional) at 1.0 m³/h hpa 655 External available pressure differential, circulation pump / heating circuit 2 (optional) at 1.5 m³/h hpa 518 External available pressure differential, circulation pump / heating circuit 2 (optional) at 1.5 m³/h hpa 188 Hot water volume > 40°C		hPa	663
External available pressure differential, circulation pump / heating circuit 2 (optional) at 1.0 m³/h h hPa 5.18 External available pressure differential, circulation pump / heating circuit 2 (optional) at 1.5 m³/h hPa 5.18 External available pressure differential, circulation pump / heating circuit 2 (optional) at 1.5 m³/h hPa 188 Hot water volume > 40°C I 147.1 Primary heating water input power at flow rate, upper indirect coil			444
External available pressure differential, circulation pump / heating circuit 2 (optional) at 1.5 m³/h hPa 188 External available pressure differential, circulation pump / heating circuit 2 (optional) at 2.0 m³/h hPa 188 Hot water volume > 40°C I 1 147.7 Primary heating water input power at flow rate, upper indirect coil kW - l/min 33.1 / 15.2 Pressure drop at 1.0 m³/h, indirect coil, top hPa 286 Reheating time, upper indirect coil min 12.4 Max. operating temperature heating water °C 886 Application limits Max. permissible pressure (Design Pressure) DHW cylinder MPa 0.3 Max. permissible pressure (Design Pressure) Upper indirect coil MPa 0.3 Test pressure, DHW cylinder MPa 1.5 Max. throughput MPa 0.3 Test pressure, DHW cylinder MPa 0.3 Test pressure, buffer cylinder MPa 0.4 Max. permissible pressure (Design Pressure) buffer tank MPa 0.4 Max. permissible pressure (Design Pressure) buffer tank MPa 0.4 Max. permissible pressure (Design Pressure) buffer tank MPa 0.4 Max permissible pressure (Design Pressure) buffer tank MPa 0.4 Max permissible pressure (Design Pressure) buffer tank MPa 0.4 Max permissible pressure (Design Pressure) buffer tank MPa 0.4 Max permissible pressure (Design Pressure) buffer tank MPa 0.4 Max permissible pressure (Design Pressure) buffer tank MPa 0.4 Max permissible pressure (Design Pressure) buffer tank MPa 0.4 Max permissible pressure (Design Pressure) buffer tank MPa 0.4 Max permissible pressure (Design Pressure) buffer tank MPa 0.4 Max permissible pressure (Design Pressure) buffer tank MPa 0.4 Max power (Design Pressure) buffer tank MPa 0.4 Max permissible pressure (Design Pressure) buffer tank MPa 0.4 Max power (Onsumption (Design Pressure) buffer tank MPa 0.4 Max power (Onsumption (Design Pressure) buffer tank MPa 0.4 Max power (Onsumption (Design Pressure) buffer tank MPa 0.4 Max power (Onsumption (Design Pressure) buffer tank MPa 0.4 Max power (Onsumption (Design Pressure) buffer tank MPa 0.4 Max power (Onsumption (Design Pressure) buffer tank MPa 0.4 Max power (Onsumption (Design Pre			665
External available pressure differential, circulation pump / heating circuit 2 (optional) at 2.0 m³/h Hot water volume > 40°C I 147.1 147.1 147.1 177.1 Primary heating water input power at flow rate, upper indirect coil Mentaling water input power at flow rate, upper indirect coil Mentaling water input power at flow rate, upper indirect coil Mentaling water input power at flow rate, upper indirect coil Mentaling water input power at flow rate, upper indirect coil Mentaling water input power at flow rate, upper indirect coil Mentaling water parallel water Application limits Max. permissible pressure (Design Pressure) DHW cylinder Max. permissible pressure (Design Pressure) upper indirect coil MPa 0.3 Max. permissible pressure (Design Pressure) upper indirect coil MPa 1.5 Max. throughput Max. permissible pressure (Design Pressure) buffer tank MPa 0.4 Maximum permissible pressure (Design Pressure) buffer tank MPa 0.4 Maximum permissible pressure ° C 889 Heating water quality requirements Water hardness ° dH 23 PH value (with aluminium compounds) B.0-8.5 PH value (without aluminium compounds) Conductivity (softening) PS/cm 20-100 Conductivity (softening) Conductivity (softening) Mg/l < 0.00 Oxygen 8-12 weeks after filling (softening) Mg/l < 0.00 Oxygen 8-12 weeks after filling (softening) Mg/l < 0.00 Oxygen 8-12 weeks after filling (desalinating) Mg/l < 0.00 Oxygen 8-12 weeks after filling (desalinating) Mg/l < 0.00 Max. power consumption, charging pump Mg/l < 0.00 Max. power consumption, charging pump Mg/l < 0.00 Max. power consumption, charging pump Mg/l < 0.00 Max. power consumption /24 h at 65 °C KWh 1.3 Standby energy consumption/24 h at 65 °C KWh 1.3			518
Hot water volume > 40°C Primary heating water input power at flow rate, upper indirect coil RW - I/min 33.1 / 15.2 Reheating time, upper indirect coil, top Reheating time, upper indirect coil Max. operating temperature heating water Application limits Max. permissible pressure (Design Pressure) DHW cylinder Max. permissible pressure (Design Pressure), upper indirect coil MPa 0.7 Max. permissible pressure (Design Pressure), upper indirect coil MPa 1.5 Max. hroughput Mrax. permissible pressure (Design Pressure) buffer tank MPa 0.3 Test pressure, DHW cylinder Mrax. permissible pressure (Design Pressure) buffer tank MPa 0.3 Test pressure, buffer cylinder Mrax. permissible pressure (Design Pressure) buffer tank MPa 0.3 Test pressure, buffer cylinder Mrax. permissible pressure (Design Pressure) buffer tank MPa 0.3 Test pressure, buffer cylinder Mrax. permissible pressure (Design Pressure) buffer tank MPa 0.3 Test pressure, buffer cylinder Mrax. permissible pressure (Design Pressure) buffer tank Mrax. permissible pressure (Design Pressure) buffer tank M		hPa	189
Primary heating water input power at flow rate, upper indirect coil kW - l/min 33.1/15.2 Pressure drop at 1.0 m³/h, indirect coil min 12.4 Max. operating temperature heating water °C 88 Application limits MPa 0.7 Max. permissible pressure (Design Pressure) DHW cylinder MPa 0.3 Max. permissible pressure (Design Pressure), upper indirect coil MPa 0.3 Test pressure, DHW cylinder MPa 1.5 Max. throughput I/min 25 Max. permissible pressure (Design Pressure) buffer tank MPa 0.3 Test pressure, buffer cylinder MPa 0.3 Maximum permissible pressure °C 88 Maximum permissible pressure °C 88 Heating water quality requirements °C 88 Water hardness °dH ≤3 PH value (with aluminium compounds) 8.0-8.5 9.8-9.5 PH value (with aluminium compounds) \$0.95/cm <0.00			147.1
Pressure drop at 1.0 m³/h, indirect coil, top hPa 28 Reheating time, upper indirect coil min 12.4 Max. operating temperature heating water °C 89 Application limits Total control of the pressure (Design Pressure) DHW cylinder MPa 0.3 Max. permissible pressure (Design Pressure), upper indirect coil MPa 0.3 Est pressure, DHW cylinder MPa 1.5 Max. throughput I/min 25 Max. permissible pressure (Design Pressure) buffer tank MPa 0.3 Test pressure, buffer cylinder MPa 0.4 Maximum permissible pressure °C 88 Heating water quality requirements °C 88 Water hardness °MB ≤3 Hy value (with aluminium compounds) 8.0 - 6.2 8 Hy value (without aluminium compounds) \$0.0 - 1.0 \$0.0 - 1.0 Conductivity (softening) µS/cm <10.00	Primary heating water input power at flow rate, upper indirect coil	kW - I/min	33.1 / 15.2
Reheating time, upper indirect coil min 12.4 Max. operating temperature heating water °C 89 Application limits MPa 0.7 Max. permissible pressure (Design Pressure) Unsign Pressure), upper indirect coil MPa 0.3 Max. permissible pressure (Design Pressure), upper indirect coil MPa 0.3 Test pressure, DHW cylinder MPa 1.5 Max. throughput I/min 25 Max. permissible pressure (Design Pressure) buffer tank MPa 0.3 Test pressure, buffer cylinder MPa 0.45 Maximum permissible pressure °C 89 Heating water quality requirements "C 89 Water hardness °C 80 BH value (with aluminium compounds) 8.0-8.5 80-8.5 BH value (with out aluminium compounds) \$0.95.5 \$0.95.5 Conductivity (desalinating) µS/cm <1000 Conductivity (desalinating) µS/cm <1000 Conductivity (desalinating) mg/l <0.30 Oxygen 8-12 weeks after filling (softening) mg		hPa	28
Application limits Max. permissible pressure (Design Pressure) DHW cylinder Max. permissible pressure (Design Pressure), upper indirect coil MPa 0.3 Max. permissible pressure (Design Pressure), upper indirect coil MPa 1.5 Max. throughput Mrin 25 Max. permissible pressure (Design Pressure) buffer tank MPa 0.3 Test pressure, buffer cylinder MPa 0.45 Maximum permissible pressure MPa 0.46 Maximum permissible pressure Metarling water quality requirements Water hardness AdH 30 Matule (with aluminium compounds) Conductivity (softening) Conductivity (softening) Conductivity (desalinating) Conductivity (desalinating) Coxygen 8-12 weeks after filling (softening) Oxygen 8-12 weeks after filling (softening) Power consumption Power consumption, emergency/booster heater Max. power consumption, circulation pump, heating side Energy data Standby energy consumption/24 h at 65 °C MPa 0.7 MPa 0.7 MPa 0.8 MPa 0.9 MPa			12.4
Application limits Max. permissible pressure (Design Pressure), upper indirect coil Max. permissible pressure (Design Pressure), upper indirect coil Max. permissible pressure (Design Pressure), upper indirect coil Max. throughput Max. throughput Max. permissible pressure (Design Pressure) buffer tank Max. permissible pressure (Design Pressure) buffer tank Max. permissible pressure (Design Pressure) buffer tank MPa 0.3 Test pressure, buffer cylinder MPa 0.4 Maximum permissible pressure Maximum permissible pressure Water hardness Adh Saph value (with aluminium compounds) Water hardness Ph value (with aluminium compounds) Conductivity (softening) Conductivity (desalinating) Conductivity (desalinating) Conductivity (desalinating) Coxygen 8-12 weeks after filling (softening) Power consumption Power consumption, emergency/booster heater Max. power consumption, circulation pump, heating side Energy data Standby energy consumption/24 h at 65 °C KWh 1.3	Max. operating temperature heating water	°C	89
Max. permissible pressure (Design Pressure), upper indirect coilMPa0.3Test pressure, DHW cylinderMPa1.5Max. throughputI/min25Max. permissible pressure (Design Pressure) buffer tankMPa0.3Test pressure, buffer cylinderMPa0.44Maximum permissible pressure°C89Heating water quality requirements°dH≤3Water hardness°dH≤3PH value (with aluminium compounds)8.0-8.58.0-8.5PH value (without aluminium compounds)µS/cm<1000			
Test pressure, DHW cylinder Max. throughput Max. throughput Max. permissible pressure (Design Pressure) buffer tank Mea	Max. permissible pressure (Design Pressure) DHW cylinder	MPa	0.7
Max. throughputI/min25Max. permissible pressure (Design Pressure) buffer tankMPa0.3Test pressure, buffer cylinderMPa0.45Maximum permissible pressure°C89Heating water quality requirements***Water hardness°dH≤3PH value (with aluminium compounds)8.0-8.5PH value (without aluminium compounds)μS/cm<100		MPa	0.3
Max. permissible pressure (Design Pressure) buffer tankMPa0.3Test pressure, buffer cylinderMPa0.45Maximum permissible pressure°C89Heating water quality requirements***Water hardness°dH≤3pH value (with aluminium compounds)8.0-8.5pH value (without aluminium compounds)µS/cm<1000	Test pressure, DHW cylinder	MPa	1.5
Test pressure, buffer cylinder Maximum permissible pressure C Maximum permissible pressure Water hardness PH value (with aluminium compounds) PH value (without aluminium compounds) Conductivity (softening) Conductivity (desalinating) Chloride Oxygen 8-12 weeks after filling (softening) Oxygen 8-12 weeks after filling (desalinating) Power consumption, emergency/booster heater MPa MPa 8.0-45 89 Heating water quality requirements Water hardness ° dH ≤3 8.0-8.5 PM (≤10.00 1	Max. throughput	I/min	25
Maximum permissible pressure°C89Heating water quality requirements***Water hardness°dH<3	Max. permissible pressure (Design Pressure) buffer tank	MPa	0.3
Heating water quality requirements Water hardness	Test pressure, buffer cylinder	MPa	0.45
Water hardness°dH≤3pH value (with aluminium compounds)8.0-8.5pH value (without aluminium compounds)8.0-10.0Conductivity (softening)μS/cm<10.00	Maximum permissible pressure	°C	89
pH value (with aluminium compounds)8.0-8.5pH value (without aluminium compounds)8.0-10.0Conductivity (softening)μS/cm<1000	Heating water quality requirements		
pH value (without aluminium compounds) Conductivity (softening) Conductivity (desalinating) Chloride Oxygen 8-12 weeks after filling (softening) Oxygen 8-12 weeks after filling (desalinating) Power consumption Power consumption, emergency/booster heater Max. power consumption, charging pump Max. power consumption, circulation pump, heating side Energy data Standby energy consumption/24 h at 65 °C 8 8.0-10.0 9 8.0-10.0 10 90.0	Water hardness	°dH	≤3
Conductivity (softening) Conductivity (desalinating) Chloride Oxygen 8-12 weeks after filling (softening) Oxygen 8-12 weeks after filling (desalinating) Power consumption Power consumption, emergency/booster heater Max. power consumption, charging pump Max. power consumption, circulation pump, heating side Energy data Standby energy consumption/24 h at 65 °C VS/cm C1000 Mg/l C300 C3000 Mg/l C300 C3000 Mg/l C300 C3000 Mg/l C3000 C3000	pH value (with aluminium compounds)		8.0-8.5
Conductivity (desalinating) Chloride Oxygen 8-12 weeks after filling (softening) Oxygen 8-12 weeks after filling (desalinating) Power consumption Power consumption, emergency/booster heater Max. power consumption, charging pump Max. power consumption, circulation pump, heating side Energy data Standby energy consumption/24 h at 65 °C Mg/l A0.02 Mg/l A0.	pH value (without aluminium compounds)		8.0-10.0
Chloride mg/l <30 Oxygen 8-12 weeks after filling (softening) mg/l <0.02 Oxygen 8-12 weeks after filling (desalinating) mg/l <0.1 Oxygen 8-12 weeks after filling (desalinating) mg/l <0.1 Power consumption Power consumption, emergency/booster heater kW 5.9 Max. power consumption, charging pump W 60 Max. power consumption, circulation pump, heating side W 60 Energy data Standby energy consumption/24 h at 65 °C kWh 1.3	Conductivity (softening)	μS/cm	<1000
Oxygen 8-12 weeks after filling (softening) Oxygen 8-12 weeks after filling (desalinating) Power consumption Power consumption, emergency/booster heater Max. power consumption, charging pump Max. power consumption, circulation pump, heating side Energy data Standby energy consumption/24 h at 65 °C Standby energy consumption/24 h at 65 °C Oxygen 8-12 weeks after filling (softening) mg/l <0.02 Mg/l <0.12 KW 5.9 Mg/l 60.02 KW 60.02 KW 1.3	Conductivity (desalinating)	μS/cm	20-100
Oxygen 8-12 weeks after filling (desalinating) mg/l <0.1 Power consumption Power consumption, emergency/booster heater kW 5.9 Max. power consumption, charging pump W 60 Max. power consumption, circulation pump, heating side W 60 Energy data Standby energy consumption/24 h at 65 °C kWh 1.3	Chloride		<30
Power consumption Power consumption, emergency/booster heater Max. power consumption, charging pump Max. power consumption, circulation pump, heating side Energy data Standby energy consumption/24 h at 65 °C KWh 1.3	Oxygen 8-12 weeks after filling (softening)		<0.02
Power consumption, emergency/booster heater kW 5.9 Max. power consumption, charging pump W 60 Max. power consumption, circulation pump, heating side W 60 Energy data Standby energy consumption/24 h at 65 °C kWh 1.3	Oxygen 8-12 weeks after filling (desalinating)		<0.1
Max. power consumption, charging pump W 60 Max. power consumption, circulation pump, heating side W 60 Energy data Standby energy consumption/24 h at 65 °C kWh 1.3	Power consumption		
Max. power consumption, circulation pump, heating side Energy data Standby energy consumption/24 h at 65 °C kWh 1.3	Power consumption, emergency/booster heater	kW	5.9
Energy data Standby energy consumption/24 h at 65 °C kWh 1.3	Max. power consumption, charging pump		60
Energy data Standby energy consumption/24 h at 65 °C kWh 1.3	Max. power consumption, circulation pump, heating side		60
Energy efficiency class	Standby energy consumption/24 h at 65 °C	kWh	1.3
	Energy efficiency class		В

INSTALLATION | GUARANTEE | ENVIRONMENT AND RECYCLING

Specification

		HSBC 200 S (GB) set
Electrical details		
Rated control voltage	V	230
Control phases		1/N/PE
Control circuit fuse	A	1 x B 16
Rated voltage, emergency/booster heater	V	230
Phases, emergency/booster heater		2/N/PE
Emergency/booster heater fuse	A	2 x B 16
Frequency	Hz	50
Output data		
Tested to standard		EN 12897:2016
Values		
Nominal design flow rate of heating system at A-7/W35 and 7 K	m³/h	1.4
Heating flow rate (min.)	m³/h	0.7
Safety assembly, max. supply pressure	MPa	1.6
Recommended operating pressure - heating circuit	MPa	0.2
Recommended operating pressure - DHW	MPa	0.35
Pressure reducing valve, downstream set pressure	MPa	0.35
T&P valve, nominal set temperature	°C	90
T&P valve, nominal set pressure	MPa	0.7
T&P valve, nominal dimension		DN 15
Expansion vessel pre charge-pressure, DHW	MPa	0.35
Expansion vessel volume, DHW	<u></u>	8
Versions		
IP-Rating		IP20
Dimensions		
Height	mm	1908
Width	mm	680
Depth	mm	871
Height of unit when tilted	mm	2107
Weights		
Weight (wet)	kg	471
Weight (dry)	kg	203

Further details

	HSBC 200 S (GB) Set
	236917
Maximum altitude for installation	 2000

Guarantee

The guarantee conditions of our German companies do not apply to appliances acquired outside of Germany. In countries where our subsidiaries sell our products a guarantee can only be issued by those subsidiaries. Such guarantee is only granted if the subsidiary has issued its own terms of guarantee. No other guarantee will be granted.

We shall not provide any guarantee for appliances acquired in countries where we have no subsidiary to sell our products. This will not affect warranties issued by any importers.

Environment and recycling

We would ask you to help protect the environment. After use, dispose of the various materials in accordance with national regulations.

Deutschland

STIEBEL ELTRON GmbH & Co. KG Dr.-Stiebel-Straße 33 | 37603 Holzminden Tel. 05531 702-0 | Fax 05531 702-480 info@stiebel-eltron.de www.stiebel-eltron.de

Verkauf Kundendienst

Tel. 05531 702-110 | Fax 05531 702-95108 | info-center@stiebel-eltron.de Tel. 05531 702-111 | Fax 05531 702-95890 | kundendienst@stiebel-eltron.de Ersatzteilverkauf Tel. 05531 702-120 | Fax 05531 702-95335 | ersatzteile@stiebel-eltron.de

Australia

STIEBEL ELTRON Australia Pty. Ltd. 294 Salmon Street | Port Melbourne VIC 3207 Tel. 03 9645-1833 | Fax 03 9644-5091 info@stiebel-eltron.com.au www.stiebel-eltron.com.au

Austria

STIEBEL ELTRON Ges.m.b.H. Gewerbegebiet Neubau-Nord Margaritenstraße 4 A | 4063 Hörsching Tel. 07221 74600-0 | Fax 07221 74600-42 info@stiebel-eltron.at www.stiebel-eltron.at

STIEBEL ELTRON bvba/sprl 't Hofveld 6 - D1 | 1702 Groot-Bijgaarden Tel. 02 42322-22 | Fax 02 42322-12 info@stiebel-eltron.be www.stiebel-eltron.be

STIEBEL ELTRON (Tianjin) Electric Appliance Plant C3, XEDA International Industry City Xiqing Economic Development Area 300385 Tianjin Tel. 022 8396 2077 | Fax 022 8396 2075 info@stiebeleltron.cn www.stiebeleltron.cn

Czech Republic

STIEBEL ELTRON spol. s r.o. Dopraváků 749/3 | 184 00 Praha 8 Tel. 251116-111 | Fax 235512-122 info@stiebel-eltron.cz www.stiebel-eltron.cz

Finland

STIEBEL ELTRON OY Kapinakuja 1 | 04600 Mäntsälä Tel. 020 720-9988 info@stiebel-eltron.fi www.stiebel-eltron.fi

France

STIEBEL ELTRON SAS 7-9, rue des Selliers B.P 85107 | 57073 Metz-Cédex 3 Tel. 0387 7438-88 | Fax 0387 7468-26 info@stiebel-eltron.fr www.stiebel-eltron.fr

Hungary

STIEBEL ELTRON Kft. Gyár u. 2 | 2040 Budaörs Tel. 01 250-6055 | Fax 01 368-8097 info@stiebel-eltron.hu www.stiebel-eltron.hu

NIHON STIEBEL Co. Ltd. Kowa Kawasaki Nishiguchi Building 8F 66-2 Horikawa-Cho Saiwai-Ku | 212-0013 Kawasaki Tel. 044 540-3200 | Fax 044 540-3210 info@nihonstiebel.co.jp www.nihonstiebel.co.jp

Netherlands

STIEBEL ELTRON Nederland B.V. Daviottenweg 36 | 5222 BH 's-Hertogenbosch Tel. 073 623-0000 | Fax 073 623-1141 info@stiebel-eltron.nl www.stiebel-eltron.nl

New Zealand

Stiebel Eltron NZ Limited 61 Barrys Point Road | Auckland 0622 Tel. +64 9486 2221 info@stiebel-eltron.co.nz www.stiebel-eltron.co.nz

Poland

STIEBEL ELTRON Polska Sp. z 0.0. ul. Działkowa 2 | 02-234 Warszawa Tel. 022 60920-30 | Fax 022 60920-29 biuro@stiebel-eltron.pl www.stiebel-eltron.pl

Russia

STIEBEL ELTRON LLC RUSSIA Urzhumskaya street 4, building 2 | 129343 Moscow Tel. +7 495 125 0 125 info@stiebel-eltron.ru www.stiebel-eltron.ru

Slovakia

STIEBEL ELTRON Slovakia, s.r.o. Hlavná 1 | 058 01 Poprad Tel. 052 7127-125 | Fax 052 7127-148 info@stiebel-eltron.sk www.stiebel-eltron.sk

STIEBEL ELTRON AG Industrie West Gass 8 | 5242 Lupfig Tel. 056 4640-500 | Fax 056 4640-501 info@stiebel-eltron.ch www.stiebel-eltron.ch

Thailand

STIEBEL ELTRON Asia Ltd. 469 Moo 2 Tambol Klong-Jik Amphur Bangpa-In | 13160 Ayutthaya Tel. 035 220088 | Fax 035 221188 info@stiebeleltronasia.com www.stiebeleltronasia.com

United Kingdom and Ireland

STIEBEL ELTRON UK Ltd. Unit 12 Stadium Court Stadium Road | CH62 3RP Bromborough Tel. 0151 346-2300 | Fax 0151 334-2913 info@stiebel-eltron.co.uk www.stiebel-eltron.co.uk

United States of America

STIEBEL ELTRON, Inc. 17 West Street | 01088 West Hatfield MA Tel. 0413 247-3380 | Fax 0413 247-3369 info@stiebel-eltron-usa.com www.stiebel-eltron-usa.com

STIEBEL ELTRON

Irrtum und technische Änderungen vorbehalten! | Subject to errors and technical changes! | Sous réserve d'erreurs et de modifications techniques! | Onder voorbehoud van vergissingen en technische wijzigingen! | Salvo error o modificación técnica! | Excepto erro ou alteração técnica | Zastrzeżone zmiany techniczne i ewentualne błędy | Omyly a technické změny jsou vyhrazeny! | A muszaki változtatások és tévedések jogát fenntartjuk! | Отсутствие ошибок не гарантируется. Возможны технические изменения. | Chyby a technické zmeny sú vyhradené! Stand 9646