

Form A2-3: Compliance Verification Report for Inverter Connected Power Generating Modules

This form should be used by the **Manufacturer** to demonstrate and declare compliance with the requirements of EREC G99. The form can be used in a variety of ways as detailed below:

1. To obtain Fully Type Tested status

The **Manufacturer** can use this form to obtain **Fully Type Tested** status for a **Power Generating Module** by registering this completed form with the Energy Networks Association (ENA) Type Test Verification Report Register.

2. To obtain Type Tested status for a product

This form can be used by the **Manufacturer** to obtain **Type Tested** status for a product which is used in a **Power Generating Module** by registering this form with the relevant parts completed with the Energy Networks Association (ENA) Type Test Verification Report Register.

3. One-off Installation

This form can be used by the **Manufacturer** or **Installer** to confirm that the **Power Generating Module** has been tested to satisfy all or part of the requirements of this EREC G99. This form must be submitted to the **DNO** as part of the application.

A combination of (2) and (3) can be used as required, together with Form A2-4 where compliance of the **Interface Protection** is to be demonstrated on site.

Note:

Within this Form A2-3 the term **Power Park Module** will be used but its meaning can be interpreted within Form A2-3 to mean **Power Park Module**, **Generating Unit or Inverter** as appropriate for the context. However, note that compliance must be demonstrated at the **Power Park Module** level.

If the **Power Generating Module** is **Fully Type Tested** and registered with the Energy Networks Association (ENA) Type Test Verification Report Register, the Installation Document (Form A3) should include the **Manufacturer's** reference number (the Product ID), and this form does not need to be submitted.

Where the **Power Generating Module** is not registered with the ENA Type Test Verification Report Register or is not **Fully Type Tested** this form (all or in parts as applicable) needs to be completed and provided to the **DNO**, to confirm that the **Power Generating Module** has been tested to satisfy all or part of the requirements of this EREC G99.

PGM tech	nology	MIN 4200TL-X, MIN 4600TL-X, MIN 5000TL-X, MIN 6000TL-X			
Manufacturer name		Shenzhen Growatt New Energy Co., Ltd.			
Address		4-13th Floor, Building A, Sino-German Europe Industr Demonstration Park, No. 1, Hangcheng Avenue, Bao' District, Shenzhen, Guangdong, China.			
Tel	+86 755 2951 5888	Web site	www.ginverter.com		
E:mail	Peng.zhu@growatt.com				
Registere	d Capacity	6kW			

There are four options for Testing: (1) **Fully Type Tested**, (2) Partially **Type Tested**, (3) one-off installation, (4) tested on site at time of commissioning. The check box below indicates which tests in this Form have been completed for each of the options. With the exception of **Fully Type Tested PGMs** tests marked with *

Tested option:	1. Fully Type Tested	2. Partially Type Tested	3. One-off Man. Info.	4. Tested on Site at time of Commission -ing
0. Fully Type Tested - all tests detailed below completed and evidence attached to this submission		N/A	N/A	N/A
1. Operating Range	N/A			
2. PQ – Harmonics	-			
3. PQ – Voltage Fluctuation and Flicker	-			
4. PQ – DC Injection (Power Park Modules only)	-			
5. Power Factor (PF)*				
6. Frequency protection trip and ride through tests*				
7. Voltage protection trip and ride through tests*				
8. Protection – Loss of Mains Test*, Vector Shift and RoCoF Stability Test*	•			
9. LFSM-O Test*				
10. Protection – Reconnection Timer*				
11. Fault Level Contribution				
12. Self-monitoring Solid State Switch				
13. Wiring functional tests if required by para 15.2.1 (attach relevant schedule of tests)*	-			
14. Logic Interface (input port)*				
15. Cyber security*				
* may be carried out at the time of commissioning (Form A. Document reference(s) for Manufacturers' Information :	2-4).			

 Manufacturer
 compliance
 declaration. - I certify that all products supplied by the company with the above

 Type Tested Manufacturer's reference number will be manufactured and tested to ensure that they perform as stated in this document, prior to shipment to site and that no site Modifications are required to ensure that the product meets all the requirements of EREC G99.

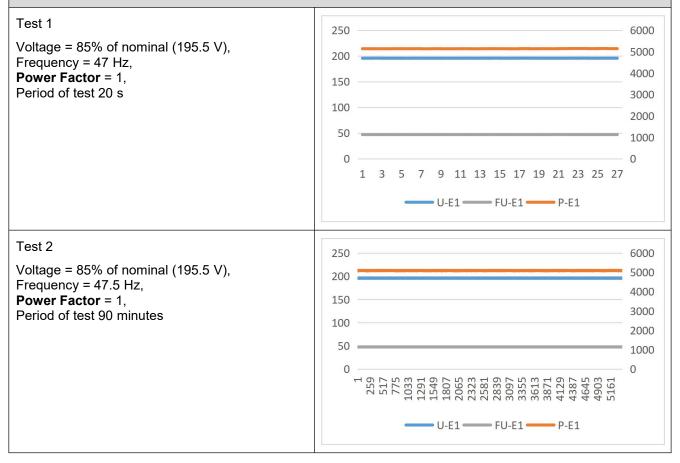
 Signed
 Image: Signed S

Where parts of the testing are carried out by persons or organisations other than the **Manufacturer** then that person or organisation shall keep copies of all test records and results supplied to them to verify that the testing has been carried out by people with sufficient technical competency to carry out the tests.

A2-3 Compliance Verification Report –Tests for Type A Inverter Connected Power Generating Modules – test record

1. Operating Range: Two tests should be carried with the **Power Generating Module** operating at **Registered Capacity** and connected to a suitable test supply or grid simulation set. The power supplied by the primary source shall be kept stable within ± 5 % of the apparent power value set for the entire duration of each test sequence.

Frequency, voltage and **Active Power** measurements at the output terminals of the **Power Generating Module** shall be recorded every second. The tests will verify that the **Power Generating Module** can operate within the required ranges for the specified period of time.

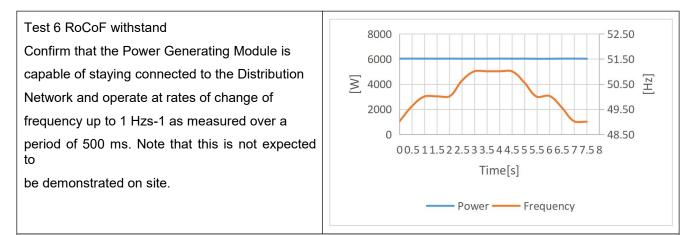

The Interface Protection shall be disabled during the tests.

In case of a PV **Power Park Module** the PV primary source may be replaced by a DC source.

In case of a full converter **Power Park Module** (eg wind) the primary source and the prime mover Inverter/rectifier may be replaced by a DC source.

Pass or failure of the test should be indicated in the fields below (right hand side), for example with the statement "Pass", "No disconnection occurs", etc. Graphical evidence is preferred.

Note that the value of voltage stated in brackets assumes a LV connection. This should be adjusted for HV as required.



Engineering Recommendation G99 Form A2-3

Test 3 Voltage = 110% of nominal (253 V)., Frequency = 51.5 Hz, Power Factor = 1, Period of test 90 minutes	300 250 200 150 100 100 100 100 100 100 222 103 103 103 100 103 103 103 103	7000 6000 5000 4000 3000 2000 1000 0
Test 4 Voltage = 110% of nominal (253 V), Frequency = 52.0 Hz, Power Factor = 1, Period of test 15 minutes	300 250 200 150 100 50 0 100 50 0 U-E1 FU-E1 P-E1	7000 6000 5000 4000 3000 2000 1000 0
Test 5 Voltage = 100% of nominal (230 V), Frequency = 50.0 Hz, Power Factor = 1, Period of test = 90 minutes	250 200 150 100 50 517 517 517 517 517 517 517 517	7000 6000 5000 4000 3000 2000 1000 0

2. Power Quality – Harmonics:

For **Power Generating Modules** of **Registered Capacity** of less than 75 A per phase (ie 50 kW) the test requirements are specified in Annex A.7.1.5. These tests should be carried out as specified in BS EN 61000-3-12 The results need to comply with the limits of Table 2 of BS EN 61000-3-12 for single phase equipment and Table 3 of BS EN 610000-3-12 for three phase equipment.

Power Generating Modules with emissions close to the limits laid down in BS EN 61000-3-12 may require the installation of a transformer between 2 and 4 times the rating of the **Power Generating Module** in order to accept the connection to a **Distribution Network**.

For **Power Generating Modules** of **Registered Capacity** of greater than 75 A per phase (ie 50 kW) the installation must be designed in accordance with EREC G5.

The rating of the Power Generating Module (per phase) should be provided below, and the Total Harmonic Distortion (THD) and Partial Weighted Harmonic Distortion (PWHD) should be provided at the bottom of this section.

Power Generating Module tested to BS EN 61000-3-12

Power Gen phase (rpp)	erating Module ra	ating per	4.2	kVA		6 = Measured Value ing per phase (kVA)				
	Average harmonic current results – Phase 1									
Harmonic At 45-55% of Registered Capacity			100% of Regist Capacity	ered	Limit in BS EN 61000-3-12					
	Measured Value MV in Amps	%	Measured % Value MV in Amps		1 phase	3 phase				
2	0.0009	0.0049	0.0031	0.0168	8%	8%				
3	0.0976	0.5347	0.1930	1.0567	21.6%	Not stated				
4	0.0001	0.0005	.0005 0.0001 0.0007		4%	4%				
5	0.0222	0.1216	0.0676	0.3703	10.7%	10.7%				
6	0.0001 0.0004		0.0033	0.0178	2.67% 2.67%					

-			1		1	
7	0.0144	0.0788	0.0529	0.2895	7.2%	7.2%
8	0.0009	0.0047	0.0025	0.0135	2%	2%
9	0.0164	0.0901	0.0633	0.3467	3.8%	Not stated
10	0.0004	0.0023	0.0004	0.0022	1.6%	1.6%
11	0.0159	0.0872	0.0464	0.2539	3.1%	3.1%
12	0.0018	0.0101	0.0032	0.0173	1.33%	1.33%
13	0.0093	0.0510	0.0340	0.1859	2%	2%
THD	-	0.1078	-	0.2459	23%	13%
PWHD	-	0.1294	-	0.4327	23%	22%

Power Gen phase (rpp)	erating Module r	ating per	4.6	kVA		Harmonic % = Measured Value (A) x 23/rating per phase (kVA)		
		Average h	armonic current results – Phase 1					
Harmonic	At 45-55% of R Capacity	egistered	100% of Regis Capacity	tered	Limit in BS	EN 61000-3-12		
	Measured Value MV in Amps	%	Measured Value MV in Amps	%	1 phase	3 phase		
2	0.0002	0.0009	0.0052	0.0262	8%	8%		
3	0.1086	0.5432	0.1881	0.9404	21.6%	Not stated		
4	0.0014	0.0070	0.0001	0.0006	4%	4%		
5	0.0240	0.1199	0.0701	0.3506	10.7%	10.7%		
6	0.0000	0.0000	0.0026	0.0128	2.67%	2.67%		
7	0.0179	0.0893	0.0584	0.2920	7.2%	7.2%		
8	0.0011	0.0054	0.0006	0.0028	2%	2%		
9	0.0201	0.1004	0.0554	0.2772	3.8%	Not stated		
10	0.0012	0.0060	0.0010	0.0050	1.6%	1.6%		
11	0.0191	0.0957	0.0514	0.2571	3.1%	3.1%		
12	0.0006	0.0030	0.0036	0.0178	1.33%	1.33%		

13	0.0161	0.0803	0.0406	0.2032	2%	2%
THD	-	0.1215	-	0.2448	23%	13%
PWHD	-	0.1250	-	0.4490	23%	22%

	Power Generating Module rating per phase (rpp)			kVA		Harmonic % = Measured Value (A) x 23/rating per phase (kVA)			
		Average h	armonic current results – Phase 1						
Harmonic	At 45-55% of R Capacity	egistered	100% of Regis Capacity	tered	Limit in BS	EN 61000-3-12			
	Measured Value MV in Amps	%	Measured Value MV in Amps	%	1 phase	3 phase			
2	0.0001	0.0006	0.0013	0.0060	8%	8%			
3	0.1121	0.5155	0.1875	0.8625	21.6%	Not stated			
4	0.0008	0.0035	0.0004	0.0018	4%	4%			
5	0.0325	0.1493	0.0608	0.2797	10.7%	10.7%			
6	0.0002	0.0009	0.0001	0.0005	2.67%	2.67%			
7	0.0177	0.0813	0.0670	0.3084	7.2%	7.2%			
8	0.0016	0.0076	0.0003	0.0015	2%	2%			
9	0.0189	0.0868	0.0511	0.2351	3.8%	Not stated			
10	0.0009	0.0040	0.0009	0.0043	1.6%	1.6%			
11	0.0209	0.0962	0.0423	0.1945	3.1%	3.1%			
12	0.0007	0.0031	0.0049	0.0224	1.33%	1.33%			
13	0.0191	0.0879	0.0546	0.0546 0.2514		2%			
THD	-	0.1284	-	0.2429	23%	13%			
PWHD	-	0.1731	-	0.4403	23%	22%			

Power Generating Module rating per phase (rpp)	6	kVA	Harmonic % = Measured Value (A) x 23/rating per phase (kVA)
Average ha	armonic current	esults – Phas	e 1

Harmonic	At 45-55% of Re Capacity	egistered	100% of Regist Capacity	ered	Limit in BS	EN 61000-3-12
	Measured Value MV in Amps	%	Measured Value MV in Amps	%	1 phase	3 phase
2	0.0003	0.0012	0.0003	0.0012	8%	8%
3	0.1141	0.4374	0.1141	0.4374	21.6%	Not stated
4	0.0001	0.0003	0.0006	0.0025	4%	4%
5	0.0328	0.1257	0.0328	0.1257	10.7%	10.7%
6	0.0002	0.0006	0.0002	0.0008	2.67%	2.67%
7	0.0208	0.0798	0.0208	0.0798	7.2%	7.2%
8	0.0001	0.0005	0.0011	0.0042	2%	2%
9	0.0205	0.0785	0.0205	0.0785	3.8%	Not stated
10	0.0004	0.0014	0.0009	0.0034	1.6%	1.6%
11	0.0220	0.0844	0.0220	0.0844	3.1%	3.1%
12	0.0016	0.0063	0.0016	0.0063	1.33%	1.33%
13	0.0191	0.0732	0.0191	0.0732	2%	2%
THD	-	0.1308	-	0.1314	23%	13%
PWHD	-	0.1626	-	0.1760	23%	22%

3. Power Quality – Voltage fluctuations and Flicker:

For **Power Generating Modules** of **Registered Capacity** of less than 75 A per phase (ie 50 kW) these tests should be undertaken in accordance with Annex A.7.1.4.3. Results should be normalised to a standard source impedance, or if this results in figures above the limits set in BS EN 61000-3-11 to a suitable Maximum Impedance.

For **Power Generating Modules** of **Registered Capacity** of greater than 75 A per phase (ie 50 kW) the installation must be designed in accordance with EREC P28.

	Starting			Stopping			Running		
	d max	dc	d(t) d max d c		d(t) P st		P st	P It 2 hours	
Measured Values at test	1.13	0.39	0	1.15	0.41	0		0.24	0.25

impedance											
mpedance											
Normalised to standard impedance	1.13	0.39	0		1.15		0.41		0	0.24	0.25
Normalised to required maximum impedance	-	-	-		-		-		-	-	-
Limits set under BS EN 61000-3-11	4%	3.3%	3.39	%	4%		3.3%		3.3%	1.0	0.65
		_									
Test Impedance	R	0.4		Ω		X	I	0.	.25		Ω
Standard Impedance	R	0.24 * 0.4 ^		Ω		X	I		.15 * .25 ^		Ω
Maximum Impedance	R	-		Ω		X	I	-			Ω
* Applies to th	nree phas	e and split s	single	bhase	Power G	ene	erating N	//o	dules.		
^A Applies to single phase Power Generating Module and Power Generating Modules using two phases on a three phase system											
For voltage change and flicker measurements the following formula is to be used to convert the measured values to the normalised values where the Power Factor of the generation output is 0.98 or above.											
Normalised v	alue = Me	easured valu	ie x re	ferenc	e source	res	stance/n	nea	asured sou	irce resistance	at test point

Single phase units reference source resistance is 0.4 Ω

Two phase units in a three phase system reference source resistance is 0.4 Ω

Two phase units in a split phase system reference source resistance is 0.24 Ω

Three phase units reference source resistance is 0.24 Ω

Where the **Power Factor** of the output is under 0.98 then the XI to R ratio of the test impedance should be close to that of the Standard Impedance.

The stopping test should be a trip from full load operation.

The duration of these tests need to comply with the particular requirements set out in the testing notes for the technology under test. Dates and location of the test need to be noted below

Test start date	05,May,2022	Test end date	05,May,2022
Test location	Growatt certified testing laboratory		

4. Power quality – DC injection: The tests should be carried out on a single Generating Unit. Tests are to be carried out at three defined power levels $\pm 5\%$. At 230 V a 6kW one phase **Inverter** has a current output of 26.1 A so DC limit is 65.3mA. These tests should be undertaken in accordance with Annex A.7.1.4.4.

The % DC injection ("as % of rated AC current" below) is calculated as follows:

% DC injection = Recorded DC value in Amps / Base current

where the base current is the Registered Capacity (W) / Vphase. The % DC injection should not be greater than 0.25%

Test power level (4.2K)	10%	55%	100%
Recorded value in Amps	27.8mA	32.4mA	33.5mA
as % of rated AC current	0.15%	0.17%	0.18%
Limit	0.25%	0.25%	0.25%
Test power level (4.6K)	10%	55%	100%
Recorded value in Amps	30.8mA	33.1mA	38.2mA
as % of rated AC current	0.15%	0.16%	0.19%
Limit	0.25%	0.25%	0.25%
Test power level (5K)	10%	55%	100%
Recorded value in Amps	29.5mA	35.7mA	30.9mA
as % of rated AC current	0.13%	0.16%	0.14%
Limit	0.25%	0.25%	0.25%
Test power level (6K)	10%	55%	100%
Recorded value in Amps	35.8mA	39.5mA	44.3mA
as % of rated AC current	0.13%	0.14%	0.16%
Limit	0.25%	0.25%	0.25%

5. Power Factor: The tests should be carried out on a single **Power Generating Module**. Tests are to be carried out at three voltage levels and at **Registered Capacity**. Voltage to be maintained within $\pm 1.5\%$ of the stated level during the test. These tests should be undertaken in accordance with Annex A.7.1.4.2.

Note that the value of voltage stated in brackets assumes a LV connection. This should be adjusted for HV as required.

Voltage	0.94 pu (216.2 V)	1 pu (230 V)	1.1 pu (253V)
Measured value	0.9992	0.9983	0.9995
Power Factor Limit	>0.95	>0.95	>0.95

6. Protection – Frequency tests: These tests should be carried out in accordance with the Annex A.7.1.2.3. For trip tests, frequency and time delay should be stated. For "no trip tests", "no trip" can be stated.

Function	Setting	Setting Trip te			"No trip tests"	
	Frequency	Time delay	Frequency	Time delay	Frequency /time	Confirm no trip
U/F stage 1	47.5 Hz	20 s	47.52Hz	20.02s	47.7 H 30.0 s	z No trip
U/F stage 2	47 Hz	0.5 s	47.01Hz	0.489s	47.2 H 19.5 s	z No trip
					46.8 ⊢ 0.45 s	z No trip
O/F	52 Hz	0.5 s	52.00Hz	0.511s	51.8 H 120.0 s	z No trip
					52.2 ⊢ 0.45 s	z No trip

Note. For frequency trip tests the frequency required to trip is the setting ± 0.1 Hz. In order to measure the time delay a larger deviation than the minimum required to operate the projection can be used. The "No trip tests" need to be carried out at the setting ± 0.2 Hz and for the relevant times as shown in the table above to ensure that the protection will not trip in error.

7. Protection – Voltage tests: These tests should be carried out in accordance with Annex A.7.1.2.2. For trip tests, voltage and time delay should be stated. For "no trip tests", "no trip" can be stated.

Note that the value of voltage stated below assumes a LV connection This should be adjusted for HV taking account of the VT ratio as required.

Function	Setting		Trip test		"No trip tests"		
	Voltage	Time delay	Voltage	Time delay	Voltage /time		Confirm no trip
U/V	0.8 pu (184 V)	2.5 s	184.6V	2.48s	188 5.0 s	V	No trip
					180 2.45 s	V	No trip
O/V stag 1	je 1.14 pu (262.2V)	1.0 s	261.5V	1.012s	258.2 5.0 s	V	No trip
O/V stag 2	je 1.19 pu (273.7V)	0.5 s	272.6V	0.515s	269.7 0.95s	V	No trip
					277.7 0.45 s	V	No trip

Note for Voltage tests the Voltage required to trip is the setting ± 3.45 V. The time delay can be measured at a larger deviation than the minimum required to operate the protection. The No trip tests need to be carried out at the setting ± 4 V and for the relevant times as shown in the table above to ensure that the protection will not

trip in error.

8.Protection – Loss of Mains test: These tests should be carried out in accordance with BS EN 62116. Annex A.7.1.2.4.

The following sub set of tests should be recorded in the following table.

Test Power and imbalance	33%	66%	100%	33%	66%	100%
	-5% Q	-5% Q	-5% P	+5% Q	+5% Q	+5% P
	Test 22	Test 12	Test 5	Test 31	Test 21	Test 10
Trip time. Limit is 0.5s	0.367s	0.395s	0.441s	0.355s	0.374s	0.408s

Loss of Mains Protection, Vector Shift Stability test. This test should be carried out in accordance with Annex A.7.1.2.6. Confirmation is required that the Power Generating Module does not trip under positive / negative vector shift.

		-	
	Start Frequency	Change	Confirm no trip
Positive Vector Shift	49.5 Hz	+50 degrees	No trip
Negative Vector Shift	50.5 Hz	- 50 degrees	No trip

Loss of Mains Protection, RoCoF Stability test: This test should be carried out in accordance with Annex A.7.1.2.6. Confirmation is required that the Power Generating Module does not trip for the duration of the ramp up and ramp down test.

Ramp range	Test frequency ramp:	Test Duration	Confirm no trip
49.0 Hz to 51.0 Hz	+0.95 Hzs ⁻¹	2.1 s	No trip
51.0 Hz to 49.0 Hz	-0.95 Hzs ⁻¹	2.1 s	No trip

9. Limited Frequency Sensitive Mode – Over frequency test: The test should be carried out using the specific threshold frequency of 50.4 Hz and **Droop** of 10%.

This test should be carried out in accordance with Annex A.7.1.3, which also contains the measurement tolerances.

Active Power response to rising frequency/time plots are attached if frequency injection tests are undertaken in accordance with Annex A.7.2.4.

Y/N

Alternatively, simulation results should be noted below:

Test sequence at Registered	Measured Active Power Output	Frequency	Primary Power Source	Active Power Gradient
Capacity >80%				Gradient

Step a) 50.00Hz ±0.01Hz 6054.17W 50.01 Hz 6121.81W - Step b) 50.45Hz ±0.05Hz 5990.78W 50.44 Hz - - - Step c) 50.70Hz ±0.10Hz 5698.57W 50.72 Hz - - - - Step c) 50.70Hz ±0.05Hz 511.33W 51.15 Hz - - - - Step c) 50.70Hz ±0.01Hz 5695W 50.69 Hz - <					
±0.05Hz JS90.76W 5098.57W 50.72 Hz Step c) 50.70Hz 5698.57W 50.72 Hz - Step d) 51.15Hz 5191.33W 51.15 Hz - Step e) 50.70Hz 5695W 50.69 Hz - Step f) 50.45Hz 5988.72W 50.46 Hz - Step g) 50.00Hz 6024.95W 50.00Hz - Step g) 50.00Hz 6024.95W 50.00Hz - Capacity 40% - Measured Active Power Output Frequency Primary Power Source Active Pow Step a) 50.00Hz 3042.56W 49.99Hz 3097.28W - - Step b) 50.45Hz 2978.12W 50.45Hz - - - Step b) 50.70Hz 2681.45W 50.68 Hz - - - - Step d) 51.15Hz 2128.79W 51.14Hz -		6054.17W	50.01 Hz	6121.81W	-
±0.10Hz 5058.57W - Step d) 51.15Hz 5191.33W 51.15 Hz Step e) 50.70Hz 5695W 50.69 Hz Step f) 50.45Hz 5988.72W 50.46 Hz Step g) 50.00Hz 6024.95W 50.00Hz Step g) 50.00Hz 6024.95W 50.00Hz Test sequence at Registered Capacity 40% - 60% Measured Active Power Output Frequency Step a) 50.00Hz 3042.56W 49.99Hz Step b) 50.45Hz 2978.12W 50.45Hz step c) 50.70Hz 2681.45W 50.68 Hz Step d) 51.15Hz 2128.79W 51.14Hz Step o) 50.70Hz 2676.75W 50.72 Hz Step j) 50.45Hz 2976.88W 50.44 Hz Step j) 50.00Hz 2076.88W 50.01Hz		5990.78W	50.44 Hz		-
±0.05Hz 5191.33W 50.69 Hz Step e) 50.70Hz 5695W 50.69 Hz Step f) 50.45Hz 5988.72W 50.46 Hz Step g) 50.00Hz 6024.95W 50.00Hz Step g) 50.00Hz 6024.95W 50.00Hz Test sequence at Registered Capacity 40% - 60% Measured Active Power Output Frequency Step a) 50.00Hz 3042.56W 49.99Hz 3097.28W Step b) 50.45Hz 2978.12W 50.45Hz - Step b) 50.70Hz 2681.45W 50.68 Hz - Step ol 51.15Hz 2128.79W 51.14Hz - Step ol 50.70Hz 2676.75W 50.72 Hz - Step f) 50.45Hz 2976.88W 50.44 Hz - Step g) 50.00Hz 3031.89W 50.01Hz -		5698.57W	50.72 Hz		-
±0.10Hz 5093W 50.46 Hz Step f) 50.45Hz 5988.72W 50.46 Hz Step g) 50.00Hz 6024.95W 50.00Hz Test sequence at Registered Capacity 40% - 60% Measured Active Power Output Frequency Primary Power Source Active Pow Gradient Step a) 50.00Hz 3042.56W 49.99Hz 3097.28W - - Step b) 50.45Hz 2978.12W 50.45Hz - - - Step c) 50.70Hz 2681.45W 50.68 Hz - - - Step c) 50.70Hz 2128.79W 51.14Hz - - - - Step c) 50.70Hz 2676.75W 50.72 Hz -		5191.33W	51.15 Hz		-
±0.05Hz 5988.72W 50.00Hz Step g) 50.00Hz 6024.95W 50.00Hz Test sequence at Registered Capacity 40% - 60% Measured Active Power Output Frequency Primary Power Source Active Pow Gradient Step a) 50.00Hz 3042.56W 49.99Hz 3097.28W - Step b) 50.45Hz 2978.12W 50.45Hz - Step c) 50.70Hz 2681.45W 50.68 Hz - Step d) 51.15Hz 2128.79W 51.14Hz - Step e) 50.70Hz 2676.75W 50.72 Hz - Step f) 50.45Hz 2976.88W 50.44 Hz - Step g) 50.00Hz 3031.89W 50.01Hz -		5695W	50.69 Hz		-
±0.01Hz Measured Active Power Output Frequency Primary Power Source Active Pow Gradient Step a) 50.00Hz 3042.56W 49.99Hz 3097.28W - Step a) 50.00Hz 3042.56W 49.99Hz 3097.28W - Step b) 50.45Hz 2978.12W 50.45Hz - - Step c) 50.70Hz 2681.45W 50.68 Hz - - Step d) 51.15Hz 2128.79W 51.14Hz - - Step e) 50.70Hz 2676.75W 50.72 Hz - - Step f) 50.45Hz 2976.88W 50.44 Hz - - Step g) 50.00Hz 3031.89W 50.01Hz - -		5988.72W	50.46 Hz		-
at Registered Capacity 40% - 60% Power Output Gradient Step a) 50.00Hz 3042.56W 49.99Hz 3097.28W - Step b) 50.45Hz ±0.05Hz 2978.12W 50.45Hz - - Step c) 50.70Hz ±0.10Hz 2681.45W 50.68 Hz - - Step d) 51.15Hz ±0.05Hz 2128.79W 51.14Hz - - Step e) 50.70Hz ±0.10Hz 2676.75W 50.72 Hz - - Step f) 50.45Hz ±0.05Hz 2976.88W 50.44 Hz - - Step g) 50.00Hz 3031.89W 50.01Hz 50.01Hz -		6024.95W	50.00Hz		
±0.01Hz 50.45Hz Step b) 50.45Hz 2978.12W 50.45Hz 50.45Hz Step c) 50.70Hz 2681.45W 50.68 Hz - Step d) 51.15Hz 2128.79W 51.14Hz - Step e) 50.70Hz 2676.75W Step f) 50.45Hz 50.72 Hz Step f) 50.45Hz 2976.88W Step g) 50.00Hz 3031.89W 50.01Hz 50.01Hz	at Registered Capacity 40% -		Frequency	Primary Power Source	Active Power Gradient
±0.05Hz 2978.12W - Step c) 50.70Hz 2681.45W 50.68 Hz - Step d) 51.15Hz 2128.79W 51.14Hz - Step e) 50.70Hz 2676.75W 50.72 Hz - Step f) 50.45Hz 2976.88W 50.44 Hz - Step g) 50.00Hz 3031.89W 50.01Hz -		3042.56W	49.99Hz	3097.28W	-
±0.10Hz 2681.45W - Step d) 51.15Hz 2128.79W 51.14Hz - Step e) 50.70Hz 2676.75W 50.72 Hz - Step f) 50.45Hz 2976.88W 50.44 Hz - Step g) 50.00Hz 3031.89W 50 .01Hz -		2978.12W	50.45Hz		-
±0.05Hz 2128.79W Step e) 50.70Hz 2676.75W ±0.10Hz 2676.75W Step f) 50.45Hz 2976.88W ±0.05Hz 3031.89W		2681.45W	50.68 Hz		-
±0.10Hz 2076.75W Step f) 50.45Hz 2976.88W ±0.05Hz 2976.88W Step g) 50.00Hz 3031.89W 50.01Hz 50.01Hz		2128.79W	51.14Hz		-
±0.05Hz 2976.88W Step g) 50.00Hz 3031.89W 50.01Hz		2676.75W	50.72 Hz		-
		2976.88W	50.44 Hz		
		3031.89W	50 .01Hz		
10. Protection – Re-connection timer.	10. Protection –	Re-connection timer.			

Test should prove that the reconnection sequence starts after a minimum delay of 20 s for restoration of voltage and frequency to within the stage 1 settings of Table 10.1. Both the time delay setting and the measured delay should be provided in this form; both should be greater than 20 s to pass. Confirmation should be provided that the Power Generating Module does not reconnect at the voltage and frequency

Time delay setting	Measured delay	Checks on no record outside stage 1 limit		Itage or frequency is	brought to jus		
20s	30s	At 1.16 pu (266.2V) At 0.78pu At 47.4 Hz (180 V)			At 52.1 Hz		
	that the Power Module does not re-	Yes	Yes Yes Yes				
	vel contribution: Thes lete each entry, even i				Annex A.7.1.		
For Inverter	output						
Time after fa							
20ms		80.5V	26.8A				
100ms		74.5V	21.6A				
250ms		78.4V	16.9A				
500ms		75.4V 9.1A					
Time to trip		0.212	In seconds				
12. Self-Mor	nitoring solid state sv	vitching: No specified	I test requirement	s. Refer to Annex A.7	.1.7.		
Power Park	verified that in the eve Module , the voltage 50 volts within 0.5 s.						
13. Wiring fu	unctional tests: If requ	uired by para 15.2.1.					
Confirm tha commissionii	t the relevant test s ng)	chedule is attached	(tests to be u	indertaken at time	of NA		
14. Logic in	terface (input port)				·		
Confirm that	an input port is provide	ed and can be used to	shut down the m	nodule.	Yes		
Additional co	mments.						
signal from	ment is equipped n the DNO, the co uld be a simple bi	nnection should b	e installed pe	r installation man	ual, and th		

signal from the DNO, the connection should be installed per installation manual, and the signal should be a simple binary output that captured by RJ45 terminal(PIN 5 and 1 for detecting the signal). Once the signal actived, the inverter will reduce its active power to zero within 5s.

15. Cyber security

Confirm that the Power Generating Module has been designed to comply with cyber security Yes requirements, as detailed in 9.1.7.