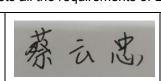


Form C: Type Test Verification Report

Type Approval and **Manufacturer** declaration of compliance with the requirements of G98.

This form should be used when making a Type Test submission to the Energy Networks Association (ENA).


If the **Micro-generator** is **Fully Type Tested** and already registered with the ENA **Type Test Verification Report** Register, the **Installation Document** should include the **Manufacturer**'s Reference Number (the Product ID), and this form does not need to be submitted.

Where the **Micro-generator** is not registered with the ENA **Type Test Verification Report** Register this form needs to be completed and provided to the **DNO**, to confirm that the **Micro-generator** has been tested to satisfy the requirements of this EREC G98.

Manufactur	er's referen	ce number	Growatt 30	00S2018				
Micro-generator technology				Growatt 750-S , Growatt 1000-S , Growatt 1500-S , Growatt 2000-S, Growatt 2500-S, Growatt 3000-S				
Manufacturer name			Growatt Ne	ew Energy Techr	nology Co., Ltd.			
Address			1st East & 3rd Floor of Building A,Building B,Jiayu Industrial Park,#28,GuangHui Road,LongTeng Community,Shiyan Street, Baoan District,Shenzhen,P.R.China					
Tel	+86 755 29	51 5888		Fax	+86 755 2951 5888			
E-mail	yunzhong.c	ai@growatt.cor	n	Web site	www.ginverter.com			
		Connection	Option					
Registered use separate	e sheet if	0.75-3	kW single	kW single phase, single, split or three phase system				
more than or connection of		N/A	kW three p	hase				
		N/A	kW two pha	ases in three pha	ase system			
		N/A	kW two pha	ases split phase	system			
Type Testee	d reference	number will be	e manufactur	ed and tested to	pplied by the company with the above ensure that they perform as stated in tions are required to ensure that the			

product meets all the requirements of EREC G98.

Signed

Growatt New Energy Technology Co., Ltd.

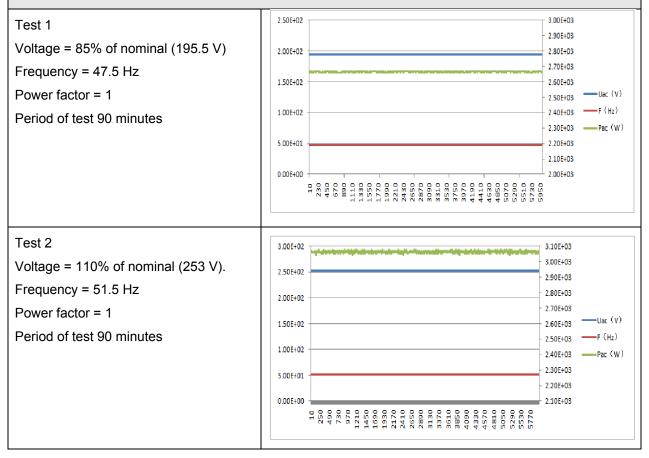
Note that testing can be done by the **Manufacturer** of an individual component or by an external test house.

On behalf of

Where parts of the testing are carried out by persons or organisations other than the **Manufacturer** then that person or organisation shall keep copies of all test records and results supplied to them to verify that

the testing has been carried out by people with sufficient technical competency to carry out the tests.

1.Operating Range: This test should be carried out as specified in EN 50438 D.3.1.


Active Power shall be recorded every second. The tests will verify that the **Micro-generator** can operate within the required ranges for the specified period of time.

The Interface Protection shall be disabled during the tests.

In case of a PV Micro-generator the PV primary source may be replaced by a DC source.

In case of a full converter **Micro-generator** (eg wind) the primary source and the prime mover **Inverter**/rectifier may be replaced by a **DC** source.

In case of a DFIG Micro-generator the mechanical drive system may be replaced by a test bench motor.

Test 3	3.00E+02		3.10E+03	
Voltage = 110% of nominal (253 V).	2.50E+02		- 3.00E+03	
Frequency = 52.0 Hz	2.00E+02		- 2.80E+03	
Power factor = 1	1.50E+02		- 2.70E+03 - 2.60E+03	——Uac (V)
Period of test 15 minutes	1.00E+02		- 2.50E+03	——F (Hz)
	5.00E+01		- 2.40E+03 - 2.30E+03	——Pac (W)
	0.00E+00		- 2.20E+03 - 2.10E+03	
	0.002100	210 490 490 490 114500 1145000 1145000 1145000 11450000000000	2.202.100	

2.Power Quality – Harmonics: These tests should be carried out as specified in BS EN 61000-3-2. The chosen test should be undertaken with a fixed source of energy at two power levels a) between 45 and 55% and b) at 100% of Registered Capacity. The test requirements are specified in Annex A1 A.1.3.1 (Inverter connected) or Annex A2 A.2.3.1 (Synchronous).

Micro-generator tested to BS EN 61000-3-2

Micro-g	enerator rating per (rpp)	phase	3		kW		
Harmonic	At 45-55% of Registered Capacity		100% of Registered Capacity				
	Measured Value MV in Amps	Norma lised Value (NV) in Amps	Measured Value MV Amps	′ in	Normali sed Value (NV) in Amps	Limit in BS EN 61000- 3-2 in Amps	Higher limit for odd harmonics 21 and above
2	0.065	0.080	0.11		0.135	1.080	
3	0.187	0.229	0.21		0.258	2.300	
4	0.027	0.033	0.04		0.049	0.430	
5	0.113	0.139	0.131		0.161	1.140	
6	0.019	0.023	0.029		0.036	0.300	
7	0.069	0.085	0.079		0.097	0.770	
8	0.007	0.009	0.009		0.011	0.230	
9	0.045	0.055	0.059		0.072	0.400	
10	0.005	0.006	0.019		0.023	0.184	
11	0.027	0.033	0.049		0.060	0.330	

12	0.007	0.009	0.009	0.011	0.153	
13	0.007	0.009	0.051	0.063	0.210	
14	0.007	0.009	0.021	0.026	0.131	
15	0.008	0.010	0.031	0.038	0.150	
16	0.008	0.010	0.021	0.026	0.115	
17	0.017	0.021	0.049	0.060	0.132	
18	0.007	0.009	0.019	0.023	0.102	
19	0.027	0.033	0.049	0.060	0.118	
20	0.007	0.009	0.019	0.023	0.092	
21	0.037	0.045	0.069	0.085	0.107	0.160
22	0.017	0.021	0.019	0.023	0.084	
23	0.027	0.033	0.059	0.072	0.098	0.147
24	0.007	0.009	0.029	0.036	0.077	
25	0.037	0.045	0.059	0.072	0.090	0.135
26	0.007	0.009	0.009	0.011	0.071	
27	0.027	0.033	0.037	0.045	0.083	0.124
28	0.007	0.009	0.007	0.009	0.066	
29	0.038	0.047	0.049	0.060	0.078	0.117
30	0.008	0.010	0.009	0.011	0.061	
31	0.018	0.022	0.029	0.036	0.073	0.109
32	0.007	0.009	0.017	0.021	0.058	
33	0.017	0.021	0.027	0.033	0.068	0.102
34	0.007	0.009	0.019	0.023	0.054	
35	0.017	0.021	0.029	0.036	0.064	0.096
36	0.007	0.009	0.009	0.011	0.051	
37	0.007	0.009	0.019	0.023	0.061	0.091
38	0.007	0.009	0.009	0.011	0.048	

								T
39	0.007	C	0.009	0.019	0.	023	0.058	0.087
40	800.0	C	0.010	0.011	0.	013	0.046	
	er limits are	e utilised						under certain conditions d in part 6.2.3.4 of BS E
		A1 A.1.			ected) or			e undertaken in accordan (Synchronous).
	d max	dc	d(t)	d max	dc	d(t)	P _{st}	P _{lt} 2 hours
Measured Values at test impedance	1.07	0.03	0	1.07	0.24	0	0.20	0.14
Normalised to standard impedance	1.08	0.03	0	1.08	0.25	0	0.21	0.15
Normalised		1				1		
to required maximum impedance								

3-11												
						<u> </u>						
Test Impedance	R	0.4		Ω	X		0.25	Ω				
Standard	R	0.24	*	Ω	х		0.15 *	Ω				
Impedance		0.4 ^					0.25 ^).25 ^				
Maximum Impedance	R	-		Ω	x		- Ω					
Applies to thre	e phase a	and spli	t single	phase M	icro-genera	tors.						
 Applies to sin system. 	ngle phas	e Micr	o-gene	rators an	nd Micro-ge	nerato	rs using tw	o phases	on a three phase			
For voltage c									ed to convert the output is 0.98 or			
Normalised va point.	alue = Me	easured	1 value*	reference	e source re	sistanc	e/measure	d source	resistance at test			
Single phase ι	units refer	ence s	ource re	sistance	is 0.4 Ω							
Two phase uni	its in a thr	ee pha	se syste	em refere	nce source	resista	nce is 0.4 C	2.				
Two phase uni	its in a sp	lit phas	e systei	m referen	ce source r	esistan	ce is 0.24 0	Σ.				
Three phase u	nits refere	ence so	ource re	sistance i	is 0.24 Ω.							
Where the pow close to that of					.98 then the	e X to F	R ratio of the	e test imp	edance should be			
The stopping t	est should	d be a f	rip from	full load	operation.							
The duration o the technology									e testing notes for			
Test start date		12,DE	C,2018	1	Test end d	ate	12,DEC,2	018				
Test location		Grow		Test Lab								
resciocation		GIUW		Test Lab								
4.Power qual D.3.10	ity – DC	injecti	on: Thi	s test sho	ould be carr	ied out	t in accorda	ance with	EN 50438 Annex			
Test power level	20%		50%		75%		100%					
Recorded value in Amps												

as % of rated AC current	d 0.12%		0.1%	0.11%		0.12%	
Limit	0.25%		0.25%	0.25%		0.25%	
	with nomir						ce with EN 50548 Annex ithin $\pm 1.5\%$ of the stated
		216.2	V	230 V		253 V	
20% of Re Capacity	egistered	0.9918	2	0.99038		0.98096	
50% of Re Capacity	egistered	0.9984	-5	0.99799		0.99777	
75% of Re Capacity	egistered	0.9991	3	0.99924		0.99861	
100% of Re Capacity	egistered	0.9993	2	0.99929		0.99928	
Limit		>0.95		>0.95	>0.95		
	and the r						cordance with EN 50438 ted) or Annex A2 A.2.2.3
Function	Setting		Trip test		"No tr	ip tests"	
	Frequenc	y Time dela		Time delay	Frequ	iency /time	Confirm no trip
U/F stage 1	47.5 Hz	20 s	47.51Hz	20.04s	47.7 I 25 s	Hz	No Trip
U/F stage 2	47 Hz	0.5 s	6 47.01Hz	0.52s	47.2 I 19.98		No Trip
					46.8 I 0.48 s		No Trip
O/F stage 1	52 Hz	0.5 s	52.0Hz	0.988s	51.8 I 89.98		No Trip
					52.2 I 0.48 s		No Trip

Note. For frequency trip tests the frequency required to trip is the setting ± 0.1 Hz. In order to measure the time

delay a larger deviation than the minimum required to operate the projection can be used. The "No trip tests" need to be carried out at the setting \pm 0.2 Hz and for the relevant times as shown in the table above to ensure that the protection will not trip in error.

7.Protection – Voltage tests: These tests should be carried out in accordance with EN 50438 Annex D.2.3 and the notes in EREC G98 Annex A1 A.1.2.2 (**Inverter** connected) or Annex A2 A.2.2.2 (Synchronous)

Function	Setting		Trip test		"No trip tests"	
	Voltage	Time delay	Voltage	Time delay	Voltage /time	Confirm no trip
U/V	184 V	2.5 s	184.5V	2.655s	188 V 3.50 s	No Trip
					180 V 2.48 s	No Trip
O/V stage 1	262.2 V	1.0 s	262.78V	1.052s	258.2 V 2.0 s	No Trip
O/V stage 2	273.7 V	0.5 s	274V	0.574s	269.7 V 0.98 s	No Trip
					277.7 V 0.48 s	No Trip

Note for Voltage tests the Voltage required to trip is the setting ± 3.45 V. The time delay can be measured at a larger deviation than the minimum required to operate the protection. The No trip tests need to be carried out at the setting ± 4 V and for the relevant times as shown in the table above to ensure that the protection will not trip in error.

8.Protection – Loss of Mains test: For PV Inverters shall be tested in accordance with BS EN 62116. Other Inverters should be tested in accordance with EN 50438 Annex D.2.5 at 10%, 55% and 100% of rated power.

To be carried out at three output power levels with a tolerance of plus or minus 5% in Test Power levels.

Test Power	10%	55%	100%	10%	55%	100%
Balancing load on islanded network	95% of Registered Capacity	95% of Registered Capacity	95% of Registered Capacity	105% of Registered Capacity	105% of Registered Capacity	105% of Registered Capacity
Trip time. Limit is 0.5 s	0.29s	0.34s	0.31s	0.32s	0.31s	0.30s

For Multi phase **Micro-generators** confirm that the device shuts down correctly after the removal of a single fuse as well as operation of all phases.

Test Power	10%	55%	100%	10%	55%	100%
Balancing load on islanded network	95% of Registered Capacity	95% of Registered Capacity	95% of Registered Capacity	105% of Registered Capacity	105% of Registered Capacity	105% of Registered Capacity
Trip time. Ph1	1	1	1	1	1	1

fuse removed										
Test Power	10%		55%	100%	, D	10	%		55%	100%
Balancing load on islanded network	95% of Register Capacity		95% of Registered Capacity	95% (Regis Capa	stered	Re	5% of gisterec pacity	ł	105% of Registered Capacity	105% of Registered Capacity
Trip time. Ph2 fuse removed	/		/	1		/			1	1
Test Power	10%		55%	100%	, D	10	%		55%	100%
Balancing load on islanded network	95% of Register Capacity		95% of Registered Capacity	95% o Regis Capa	stered	Re	5% of gisterec pacity	Ŀ	105% of Registered Capacity	105% of Registered Capacity
Trip time. Ph3 fuse removed	/		/	1		/			1	1
Note for technolo establishing that t 1.0 s for these tec	he trip oc	curred								
Indicate additional	shut dov	vn time	e included in	above r	esults.					0.3ms
For Inverters test table.	ed to BS	EN 6	2116 the foll	owing s	ub set c	of te	sts sho	uld I	be recorded i	n the following
Test Power and	33%		66%	100%	, D	33	%		66%	100%
imbalance	-5% Q		-5% Q	-5% I	D	+5	+5% Q		+5% Q	+5% P
	Test 22		Test 12	Test	5	Те	st 31		Test 21	Test 10
Trip time. Limit is 0.5 s	0.31s		0.31s	0.30s	3	0.3	34s		0.29s	0.29s
9.Protection – F accordance with E										
		Start	Frequency	Chang	e		Confirr	n nc	o trip	
Positive Vector Sh	ift	49.0	Hz	+50 de	grees		No Trip	c		
Negative Vector S	hift	50.0	Hz	- 50 de	grees		No Trip	С		
10.Protection – 11.3, test procedu										
Ramp range		Test	frequency ra	mp:	Test D	urat	ion C	Conf	irm no trip	

49.0 Hz to 51.0 Hz	+0.95 Hzs ⁻¹		2.1 s		Νο Τι	ip		
51.0 Hz to 49.0 Hz	-0.95 Hzs ⁻¹		2.1 s		Νο Τι	ip		
11.Limited Frequency Se accordance with EN 50438 a out using the specific thresh	Annex D.3.3 Power	r respo	nse to c	over- frequ	Jency.			
Test sequence at Registered Capacity >80%	Measured Active Power Output	Frequ	uency	Primary	Power	⁻ Source	Active Power Gradient	
Step a) 50.00 Hz ±0.01 Hz	3011.41W	50.00)2Hz	3076.03	W		-	
Step b) 50.45 Hz ±0.05 Hz	2896.71W	50.45	51Hz				-	
Step c) 50.70 Hz ±0.10 Hz	2755.73W	50.7H	Ηz				-	
Step d) 51.15 Hz ±0.05 Hz	2495.85W	50.15	52Hz				-	
Step e) 50.70 Hz ±0.10 Hz	2759.35W	50.70)1Hz				-	
Step f) 50.45 Hz ±0.05 Hz	2899.43W	50.45	51Hz				-	
Step g) 50.00 Hz ±0.01 Hz	3009.72W	50.00)1Hz					
Test sequence at Registered Capacity 40% - 60%	Measured Active Power Output	Frequ	uency	Primary	Power	Source	Active Power Gradient	
Step a) 50.00 Hz ±0.01 Hz	1526.47W	50Hz		1553.37	W		-	
Step b) 50.45 Hz ±0.05 Hz	1447.4W	50.45	51Hz				-	
Step c) 50.70 Hz ±0.10 Hz	1375.13W	50.70)1H 7				-	
			/1112				-	
Step d) 51.15 Hz ±0.05 Hz	1247.2W	51.15					-	
Step d) 51.15 Hz ±0.05 Hz Step e) 50.70 Hz ±0.10 Hz	1247.2W 1376.38W	51.15 50.70	51Hz				-	
Step e) 50.70 Hz ±0.10 Hz			51Hz)1Hz				- -	
Step e) 50.70 Hz ±0.10 Hz Step f) 50.45 Hz ±0.05 Hz	1376.38W	50.70	51Hz)1Hz 5Hz				-	
Step e) 50.70 Hz ±0.10 Hz Step f) 50.45 Hz ±0.05 Hz Step g) 50.00 Hz ±0.01 Hz	1376.38W 1446.41W 1525.61W	50.70 50.45	51Hz)1Hz 5Hz				-	
• •	1376.38W 1446.41W 1525.61W 38 ng frequency test	50.70 50.45 50Hz t: This	51Hz 5Hz test sho	ould be c	arried	out in acco	- - - - ordance with EN	

Test a) 50 Hz ± 0.01 Hz			3032.02 W			49.999 Hz			3253.08 W	
Test b) Point between 49.5 Hz and 49.6 Hz			3038.58 W			49.551 Hz			3260.83 W	
Test c) Point between 47.5 Hz and 47.6 Hz			2910.21 W			47.552 Hz			3188.49	W
NOTE: The	operating point	in Test	(b) and (d	c) sh	nall be r	naintained	for at	least !	5 minutes	
13.Re-conr	nection timer.									
	l prove that the l frequency to w						ninimu	ım del	ay of 20 s	for restoration of
Time delay setting	Measured delay			ks on no reconnection when voltage or frequency is brought to outside stage 1 limits of table 2.						
60s	60s		At 266.2	2 V At 196		6.1 V	At 4	7.4 Hz		At 52.1 Hz
Confirmation that the Micro- generator does not re-connect.			Yes		Yes	Yes		Yes		Yes
	vel contributio verter connected							dance	with ERE	C G98 Annex A1
For machines with electro-magne			ic output			For Inverter output				
Parameter			Symbol	Value		Time after fault		Volts		Amps
Peak Short Circuit current			İ _p	1		20 ms		81.2\	/	29.3A
Initial Value of aperiodic current			Α	1		100 ms		77.3V		22.5A
Initial symmetrical short-circuit current*		cuit	I _k	1		250 ms		76.9V		16.1A
Decaying (aperiodic) component of short circuit current*			i _{DC}	1		500 ms		73.5V		8.6A
Reactance/Resistance Ratio of source*		o of	×/ _R	1		Time to trip		0.11		In seconds
	machines and ant as seen at th						l prod	luce a	0 s – 2 s	s plot of the short

* Values for these parameters should be provided where the short circuit duration is sufficiently long to enable interpolation of the plot

15.Logic Interface.

Yes

Growatt New Energy Technology Co., Ltd.

16.Self-Monitoring solid state switching: No specified test requirements. Refer to EREC G98 Annex A1 A.1.3.6 (Inverter connected).	Yes/or NA								
It has been verified that in the event of the solid state switching device failing to disconnect the Micro-generator , the voltage on the output side of the switching device is reduced to a value below 50 V within 0.5 s.	NA								
Additional comments									