E350 series 2

Technical Data

Building on its tradition of open communication meters, Landis+Gyr is now bringing out the E350, the latest generation of its flexible modular meters. E350 is compatible with the interfaces and communication modules of the existing ZMF/ZFF100 platform.

Date: 12.12.2012

File name: D000027981 E350 ZxF100Ax Cx 3-phase series 2 Technical Data en g.docx

Revision history

Version	Date	Comments
d	17.03 .2011	Temperature range for display operation changed from $55^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$.
e	01.06 .2011	General load switching capacity for disconnector added.
f	20.12 .2011	Maximum cross-section of the conductor is terminal-dependent. Document template updated. g
	12.12 .2012	Company name changed to Landis+Gyr AG. Auxiliary circuits deleted. Suspension hanger added.

[^0]The E350 direct-connected residential meters record active and reactive energy consumption in all three-phase, four-wire networks (ZMF100) and three-phase, three-wire networks (ZFF100).

Basic Version

The basic version provides energy registers for tariffication, red test diodes for active and reactive energy, an optical interface for meter reading and an interface for various communication forms. This interface is protected against fraud and is independent of the module suppliers. The exchangeable AMR Module is situated outside of the calibration liability.

Disconnector

The function of the disconnector is customerspecific and is defined by the communication module. Possible uses: anti-tampering, load limitation, remote disconnect, prepayment.

Extensions

The basic version can be extended with various AMR Modules for additional functions and communications: multi-rate import/export with external rate control, S0 pulse output, communication via PLC, GSM/GPRS or Ethernet.

The values below are for the basic $3 x 230 / 400 \mathrm{~V}$ version.

E350 series 2 ZxF100Ax/Cx - Technical specifications

General

Voltage

Nominal voltage U_{n}	$3 \times 230 / 400 \mathrm{~V}$
ZMF100	$3 \times 127 / 230 \mathrm{~V}$
	$3 \times 230 \mathrm{~V}$
ZFF100	
Extended operating voltage range	$80 \%-115 \%$ Un
Frequency	50 Hz
Nominal frequency f_{n}	$\pm 2 \%$

IEC-specific Data

Current

Base current $\mathrm{I}_{\mathrm{b}} \quad$ selectable: $5,10,20$ or 40 A

Maximum current $I_{\max }$	
Metrological	selectable: 80 or 100 A
Thermal	100 A

Short circuit $\leq 10 \mathrm{~ms} \quad 30 \times I_{\max }$
Measurement Accuracy
ZMF/ZFF110Ax, to IEC 62053-21 class 1
ZMF/ZFF120Ax, to IEC 62053-21 class 2

ZMF/ZFF110Cx
Active energy, to IEC 62053-21 class 1
Reactive energy, to IEC 62053-23 class 2

ZMF/ZFF120Cx	
Active energy, to IEC 62053-21	class 2
Reactive energy, to IEC 62053-23	class 2
Measurement Behaviour	
Starting current	0.5% I $_{\mathrm{b}}$
According to IEC	ca. 0.3% I $_{\mathrm{b}}$

MID-specific Data

Current

Reference current $I_{\text {ref }} \quad$ selectable: 5,10 or 20 A

Minimum current $\mathrm{I}_{\text {min }}$	$\leq 0.05 \times \mathrm{I}_{\text {ref }}$
Transitional current $\mathrm{Itr}_{\text {tr }}$	$0.5 \mathrm{~A}, 1 \mathrm{~A}$ or 2 A
Maximum current $I_{\text {max }}$	80 or 100 A
Measurement Accuracy	to EN 50470-3
ZMF/ZFF110Ax	class B
ZMF/ZFF120Ax	class A
ZMF/ZFF110Cx, active energy	class B
ZMF/ZFF120Cx, active energy	class A
Measurement Behaviour	
Starting current $\mathrm{I}_{\text {st }}$	
Class A:	$\mathrm{I}_{\text {st }} \leq 0.005 \times \mathrm{I}_{\text {ref }}$
Class B:	$\mathrm{I}_{\text {st }} \leq 0.004 \times \mathrm{I}_{\text {ref }}$

General

Operating Behaviour

Voltage failure (Power Down)
Voltage (for $\mathrm{U}_{\mathrm{n}}=230 / 400 \mathrm{~V}$) 170 V , configurable

Voltage restoration (Power Up)	$<5 \mathrm{~s}$
Function standby 3 phases	$<3 \mathrm{~s}$
Detection of energy direction / phase voltage	
Voltage	$>176 \mathrm{~V}$

Power Consumption

Power consumption in voltage circuit	per phase
Active power at U_{n} (typical)	0.45 W
Apparent power at U_{n} (typical)	0.51 VA

Power consumption in current circuit
Apparent power at 5 A (typical)

Environmental Influences

Temperature range	
Operation meter	$-40^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
Operation display	$-25^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
Storage	$-40^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$

Temperature coefficient	$-25^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	
Range	$\pm 0.05 \%$ per K	
Average value (typical)	(from $0.1 \mathrm{I}_{\mathrm{b}}$ to $\mathrm{I}_{\max }$)	$\pm 0.05 \%$ per K
At $\cos \varphi=1 \quad$		
At $\cos \varphi=0.5$	(from $0.2 \mathrm{I}_{\mathrm{b}}$ to $\mathrm{I}_{\max }$)	$\pm 0.07 \%$ per K

Impermeability to IEC 60529 IP 52

Electromagnetic Compatibility

Electrostatic discharges according to IEC 61000-4-2
Contact discharge 8 kV

Electromagnetic RF fields	acc. to IEC 61000-4-3
80 MHz to 2 GHz	10 and $30 \mathrm{~V} / \mathrm{m}$

Radio interference suppression
according to IEC/CISPR $22 \quad$ class B

Fast transient burst test acc. to IEC 61000-4-4 Current and voltage circuits not under load 4 kV Current and voltage circuits under load according to IEC 62053-21

Fast transient surge test acc. to IEC 61000-4-5 Current and voltage circuits 4 kV

Insulation Strength

Insulation strength $\quad 4 \mathrm{kV}$ at 50 Hz for 1 minute

Impulse voltage $1.2 / 50 \mu \mathrm{~s}$	to IEC $62052-11$
Current and voltage circuits	8 kV
Protection class II acc. to IEC $62052-11$	\square
Display	
Characteristics	
Type	
Digit size value field	
Number of digits value field	8 mm
Digit size index field	8
Number of digits index field	6 mm
	5

Inputs and Outputs

Optical test outputs active and reactive energy
Type red LED
Pulse length approx. 10 ms

Meter constant $1000 \mathrm{imp} / \mathrm{kWh}$

Communication Interface

Optical interface
Type serial, bi-directional interface
Protocol according to IEC 62056-21

Wired interface	
Interface to AMR module (data readout, rate control) to Disconnector (ZxF100xB only) Contact data Maximum switching voltage 400 V AC Maximum switching current 100 A Short circuit ≤ 10 ms to EN 62053-21 3000 A Maximum switching power 25 kVA Power consumption in current path at 5 A: 0.08 VA	

Insulation strength
Contact to contact
4 kV at 50 Hz for 1 minute

Mechanical life
At maximum power $\quad 10,000$ cycles

General load switching capacity
according to IEC 62055-31
UC3

Weight and Dimensions
Weight
Without disconnector With disconnector approx. 1.1 kg approx. 1.2 kg

Dimensions (with short terminal cover)

Dimensions (with extended 60 mm terminal cover)

External dimensions compliant with DIN 43857

Width	176 mm
Height (with short terminal cover)	203 mm
Height (with extended terminal cover)	260 mm
Depth	84 mm
Height +20 mm, if suspension hanger mounted	

Suspension triangle
Height (suspension eyelet open) 180 mm
Height (suspension eyelet covered) 162 mm
Width
150 mm

Terminal cover
Short
no free space
Extended
40,60 or 80 mm free space

Material

Housing
Polycarbonate, partly glass-fiber reinforced

Connections

Phase connections
Type screw-type terminals

Diameter steel-type $\quad 8.5 \mathrm{~mm}$
Diameter brass-type $\quad 9.5 \mathrm{~mm}$
Minimum conductor cross-section $4 \mathrm{~mm}^{2}$
Maximum conductor cross-section

- (9.5 mm terminals)
$35 \mathrm{~mm}^{2}$
- (8.5 mm terminals) $25 \mathrm{~mm}^{2}$
Wire-end ferrules must be fitted on stranded wires!
Screw dimensions
M6 x 14
Maximum screw head diameter $\leq 6.6 \mathrm{~mm}$
Cross-slot type Z, size 2, to ISO-4757-1983
Tightening torque $<3 \mathrm{Nm}$

Layout and dimensions

E350 Type Designation

Network type

ZFF 3-phase, 3-wire network
ZMF 3-phase, 4-wire network

Connection type

1 Direct connection
Accuracy class active energy
10 Class 1 (IEC); B (MID)
20 Class 2 (IEC); A (MID)

Measured quantities

A Active energy
C Active and reactive energy

Additional functionality

C Meter with communication interface
B Meter with communication interface and disconnector
Rates
e 1 rate
d 2 rates
t Multi-rate (up to 6 rates)

Anti-tampering

- No anti-tampering

F Anti-tampering
Version
s2 Series 2

Contact:
Landis+Gyr AG
Theilerstrasse 1 CH-6301 Zug
Switzerland
Phone: +41419356000
www.landisgyr.com

Landis Gyr

Imanage energy better

[^0]: Nothing in this document shall be construed as a representation or guarantee in respect of the performance, quality or durability of the specified product. Landis+Gyr accepts no liability whatsoever in respect of the specified product under or in relation to this document
 Subject to change without notice.

