

INNOVATIVE ALL-WEATHER TECHNOLOGY

Optimal yields, whatever the weather with excellent low-light and temperature behaviour.

ENDURING HIGH PERFORMANCE

Long-term yield security with Anti LID Technology, Anti PID Technology 1 , Hot-Spot Protect and Traceable Quality Tra.Q $^{\text{TM}}$.

EXTREME WEATHER RATING

High-tech aluminium alloy frame, certified for high snow (5400 Pa) and wind loads (4000 Pa).

A RELIABLE INVESTMENT

Inclusive 12-year product warranty and 25-year linear performance warranty².

STATE OF THE ART MODULE TECHNOLOGY

Q.ANTUM DUO combines cutting edge cell separation and innovative wiring with Q.ANTUM Technology.

THE IDEAL SOLUTION FOR:

¹ APT test conditions according to IEC/TS 62804-1:2015, method B (-1500 V, 168h)

² See data sheet on rear for further information.

ELECTRICAL CHARACTERISTICS

PO	VER CLASS			300	305	310	315	320
MIN	IIMUM PERFORMANCE AT STANDAR	D TEST CONDITIO	NS, STC¹ (P	OWER TOLERANCE	+5W/-0W)			
Minimum	Power at MPP¹	P _{MPP}	[W]	300	305	310	315	320
	Short Circuit Current ¹	I _{sc}	[A]	9.72	9.78	9.83	9.89	9.94
	Open Circuit Voltage ¹	V _{oc}	[V]	39.48	39.75	40.02	40.29	40.56
	Current at MPP	I _{MPP}	[A]	9.25	9.31	9.36	9.41	9.47
	Voltage at MPP	V_{MPP}	[V]	32.43	32.78	33.12	33.46	33.80
	Efficiency ¹	η	[%]	≥ 17.8	≥ 18.1	≥ 18.4	≥ 18.7	≥ 19.0
MINIMUM PERFORMANCE AT NORMAL OPERATING CONDITIONS, NMOT ²								
Minimum	Power at MPP	P _{MPP}	[W]	224.1	227.8	231.6	235.3	239.1
	Short Circuit Current	I _{sc}	[A]	7.83	7.88	7.92	7.97	8.01
	Open Circuit Voltage	V _{oc}	[V]	37.15	37.40	37.66	37.91	38.17
	Current at MPP	I _{MPP}	[A]	7.28	7.32	7.37	7.41	7.45
	Voltage at MPP	V _{MPP}	[V]	30.78	31.11	31.44	31.76	32.08

 $^1\text{Measurement tolerances P}_{\text{MPP}}\pm3\%; I_{\text{SC}}; V_{\text{OC}}\pm5\% \text{ at STC}: 1000 \text{W/m}^2, 25\pm2\text{°C}, \text{AM 1.5G according to IEC 60904-3} \\ \bullet ^2800 \text{W/m}^2, \text{NMOT, spectrum AM 1.5G according to IEC 60904-3} \\ \bullet ^2800 \text{W/m}^2, \text{NMOT, spectrum AM 1.5G according to IEC 60904-3} \\ \bullet ^2800 \text{W/m}^2, \text{NMOT, spectrum AM 1.5G according to IEC 60904-3} \\ \bullet ^2800 \text{W/m}^2, \text{NMOT, spectrum AM 1.5G according to IEC 60904-3} \\ \bullet ^2800 \text{W/m}^2, \text{NMOT, spectrum AM 1.5G according to IEC 60904-3} \\ \bullet ^2800 \text{W/m}^2, \text{NMOT, spectrum AM 1.5G according to IEC 60904-3} \\ \bullet ^2800 \text{W/m}^2, \text{NMOT, spectrum AM 1.5G according to IEC 60904-3} \\ \bullet ^2800 \text{W/m}^2, \text{NMOT, spectrum AM 1.5G according to IEC 60904-3} \\ \bullet ^2800 \text{W/m}^2, \text{NMOT, spectrum AM 1.5G according to IEC 60904-3} \\ \bullet ^2800 \text{W/m}^2, \text{NMOT, spectrum AM 1.5G according to IEC 60904-3} \\ \bullet ^2800 \text{W/m}^2, \text{NMOT, spectrum AM 1.5G according to IEC 60904-3} \\ \bullet ^2800 \text{W/m}^2, \text{NMOT, spectrum AM 1.5G according to IEC 60904-3} \\ \bullet ^2800 \text{W/m}^2, \text{NMOT, spectrum AM 1.5G according to IEC 60904-3} \\ \bullet ^2800 \text{W/m}^2, \text{NMOT, spectrum AM 1.5G according to IEC 60904-3} \\ \bullet ^2800 \text{W/m}^2, \text{NMOT, spectrum AM 1.5G according to IEC 60904-3} \\ \bullet ^2800 \text{W/m}^2, \text{NMOT, spectrum AM 1.5G according to IEC 60904-3} \\ \bullet ^2800 \text{W/m}^2, \text{NMOT, spectrum AM 1.5G according to IEC 60904-3} \\ \bullet ^2800 \text{W/m}^2, \text{NMOT, spectrum AM 1.5G according to IEC 60904-3} \\ \bullet ^2800 \text{W/m}^2, \text{NMOT, spectrum AM 1.5G according to IEC 60904-3} \\ \bullet ^2800 \text{W/m}^2, \text{NMOT, spectrum AM 1.5G according to IEC 60904-3} \\ \bullet ^2800 \text{W/m}^2, \text{NMOT, spectrum AM 1.5G according to IEC 60904-3} \\ \bullet ^2800 \text{W/m}^2, \text{NMOT, spectrum AM 1.5G according to IEC 60904-3} \\ \bullet ^2800 \text{W/m}^2, \text{NMOT, spectrum AM 1.5G according to IEC 60904-3} \\ \bullet ^2800 \text{W/m}^2, \text{NMOT, spectrum AM 1.5G according to IEC 60904-3} \\ \bullet ^2800 \text{W/m}^2, \text{NMOT, spectrum AM 1.5G according to IEC 60904-3} \\ \bullet ^2800 \text{W/m}^2, \text{NMOT, spectrum AM 1.5G according to IEC 60904-3} \\ \bullet ^2800 \text{W/m}^2, \text{NMOT, spectrum AM 1.5G according to$

Q CELLS PERFORMANCE WARRANTY

DO THE STANDARD OF THE STANDAR

At least 98% of nominal power during first year. Thereafter max. 0.54% degradation per year. At least 93.1% of nominal power up to 10 years. At least 85% of nominal power up to 25 years.

All data within measurement tolerances. Full warranties in accordance with the warranty terms of the Q CELLS sales organisation of your respective country.

PERFORMANCE AT LOW IRRADIANCE

Typical module performance under low irradiance conditions in comparison to STC conditions (25 $^{\circ}$ C, 1000 W/m²).

TEMPERATURE COEFFICIENTS								
Temperature Coefficient of I _{SC}	α	[%/K]	+0.04	Temperature Coefficient of Voc	β	[%/K]	-0.27	
Temperature Coefficient of P _{MPP}	γ	[%/K]	-0.36	Normal Module Operating Temperature	NMOT	[°C]	43±3	

PROPERTIES FOR SYSTEM DESIGN

Maximum System Voltage	$V_{\scriptsize SYS}$	[V]	1000	Safety Class	II
Maximum Reverse Current	I _R	[A]	20	Fire Rating	С
Max. Design Load, Push / Pull		[Pa]	3600/2667	Permitted Module Temperature	-40°C - +85°C
Max. Test Load, Push / Pull		[Pa]	5400/4000	on Continuous Duty	

QUALIFICATIONS AND CERTIFICATES

PACKAGING INFORMATION

VDE Quality Tested, IEC 61215:2016; IEC 61730:2016, Application Class II; This data sheet complies with DIN EN 50380.

Number of Modules per Pallet	32
Number of Pallets per Trailer (24t)	30
Number of Pallets per 40' HC-Container (26t)	26
Pallet Dimensions (L × W × H)	1760 × 1150 × 1190 mm
Pallet Weight	642 kg

Note: Installation instructions must be followed. See the installation and operating manual or contact our technical service department for further information on approved installation and use of this product.

Hanwha Q CELLS GmbH

Sonnenallee~17-21,~06766~Bitterfeld-Wolfen,~Germany~|~TEL+49~(0)3494~66~99-23444~|~FAX+49~(0)3494~66~99-23000~|~EMAIL~sales@q-cells.com~|~WEB~www.q-cells.com

