

Certificate of compliance

Applicant:

SolarEdge Technologies Ltd. 1 HaMada Street Herzeliya 4673335

Product:

Compact photovoltaic inverter

Model:

SE1000M SE1500M SE2000M SE2500M

Israel

Use in accordance with regulations:

Automatic disconnection device with single-phase mains surveillance in accordance with Engineering Recommendation G98/1 for photovoltaic systems with a single-phase parallel coupling via an inverter in the public mains supply. The automatic disconnection device is an integral part of the aforementioned inverter. This serves as a replacement for the disconnection device with isolating function that can access the distribution network provider at any time.

Applied rules and standards:

Engineering Recommendation G98/1-2:2018

Requirements for the connection of Fully Type Tested Micro-generators (up to and including 16 A per phase) in parallel with public Low Voltage Distribution Networks

DIN V VDE V 0126-1-1:2006-02 (Functional safety)

Automatic disconnection device between a generator and the public low-voltage grid

At the time of issue of this certificate the safety concept of an aforementioned representative product corresponds to the valid safety specifications for the specified use in accordance with regulations.

Report number: Certificate number: Date of issue: 17TH0251-G98/1_1 U19-0300 2019-05-17

Certification body

Holger Schaffer

Certification body of Bureau Veritas Consumer Products Services Germany GmbH Accredited according to DIN EN ISO/IEC 17065

BUREAU VERITAS Consumer Products Services Germany GmbH Oehleckerring 40, 22419 Hamburg, Germany Tel: +49 40 74041-0 cps-hamburg@de.bureauveritas.com www.bureauveritas.de/cps

Extract from test report according to the Engineering Recommendation G98

Nr. 17TH0251-G98/1_1

Type Approval and declarat	ion of compliance with th	e requi	ements of Engi	ineering Recom	mendatio	on G98			
PGM Technology	Photovoltaic inverter	Photovoltaic inverter							
Manufacturer:	SolarEdge Technologie	s Ltd.							
Address	1 HaMada Street Herzeliya 4673335 Israel	Herzeliya 4673335							
Tel	+972-9-957-6620	+972-9-957-6620 Fax +972-9-957-6591							
Email	info@solaredge.com		Website		<u>www.so</u>	laredge.com			
Rated values	SE1000M	4	SE1500M	SE2000N	1	SE2500M			
Maximum rated capacity	1000W		1500W	2000W	/1	2500W			
Rated voltage			220/230 6	60Hz/50Hz					
Firmware version		Main DSP software version is 1.00 Aux DSP software version is 2.01							
Measurement period:	2017-12-10 to 2018-02-	20, 2019	9-01-10 to 2019-	02-05, 2019-05-1	6				
Description of the structure									

Description of the structure of the power generation unit:

The power generation unit is equipped with a PV and line-side EMC filter. The power generation unit has no galvanic isolation between DC input and AC output. Output switch-off is performed with single-fault tolerance based on two series-connected relays in line and neutral. This enables a safe disconnection of the power generation unit from the network in case of error.

Differences between Generating Units:

The inverters SE1000M, SE1500M and SE20000M and are based on the inverter SE2500M. They use the same controller unit, control system and software.

Therefore testing of the SE2000M only based on the control functions are identical in the SE1000M, SE1500M and SE2500M.

The above stated Generating Units are tested according the requirements in the Engineering Recommendation G98/1. Any modification that affects the stated tests must be named by the manufacturer/supplier of the product to ensure that the product meets all requirements of the Engineering Recommendation G98/1.

Appendix C Type Test Ve	rification Report	
Extract from test report a	ccording to the Engineering Recommendation G98	Nr. 17TH0251-G98/1_1
Operating Range.		
Connection:	Always connected	
Limit:	Always connected	
Test 1	Voltage = 85% of nominal (195,5 V) Frequency = 47.5 Hz Power Factor = 1 Period of test 90 minutes	
Connection:	Always connected	
Limit:	Always connected	
Test 2	Voltage = 110% of nominal (253 V) Frequency = 51.5 Hz Power Factor = 1 Period of test 90 minutes	
Connection:	Always connected	
Limit:	Always connected	
Test 3	Voltage = 110% of nominal (253 V) Frequency = 52.0 Hz Power Factor = 1 Period of test 15 minutes	
Connection:	Always connected	
Limit:	Always connected	

Protection. Voltage tests.										
Phase 1										
Function	Set	tting	Trij	o test	No trip	test				
	Voltage [V]	Time delay [s]	Voltage [V]	Time delay [s]	Voltage / time	Confirm no trip				
U/V	184	2,5	184,6	2,757	188V / 3,5s	No trip				
		·			180V / 2,48s	No trip				
O/V stage 1	262,2	1,0	261,9	1,259	258,2V 2,0s	No trip				
O/V stage 2	273,7	0,5	273,4	0,759	269,7V 0,98s	No trip				
		·		·	277,7V 0,48s	No trip				

Note. For Voltage tests the Voltage required to trip is the setting $\pm 3,45$ V. The time delay can be measured at a larger deviation than the minimum required to operate the protection. The No trip tests need to be carried out at the setting ± 4 V and for the relevant times as shown in the table above to ensure that the protection will not trip in error.

Extract from test report according to the Engineering Recommendation G98

Nr. 17TH0251-G98/1_1

Protection. Frequency tests.										
Function	Set	ting	Trip	test	No trip	test				
	Frequency [Hz]	Time delay [s]	Frequency Time delay [Hz] [s]		Frequency / time	Confirm no trip				
U/F stage 1	47,5	20	47,52	20,271	47,7Hz / 25s	No trip				
U/F stage 2	47	47 0,5 47,01 0,786			47,2Hz / 19,98s	No trip				
					46,8Hz / 0,48s	No trip				
O/F stage 2	52	0,5	52,01	0,784	51,8Hz / 89,98s	No trip				
			·	•	52,2Hz / 0,48s	No trip				

Note. For Frequency Trip tests the Frequency required to trip is the setting ± 0.1 Hz. In order to measure the time delay a larger deviation than the minimum required to operate the projection can be used. The "No-trip tests" need to be carried out at the setting ± 0.2 Hz and for the relevant times as shown in the table above to ensure that the protection will not trip in error.

Protection. Loss of M	Protection. Loss of Mains.								
SE2500M									
Inverters tested accord	ding to BS EN 62	116.							
Balancing load on islanded network 33% of -5% Q 66% of -5% Q 100% of -5% Q 33% of +5% P 66% of +5% Q 100% of +5% Q Test 22 Test 12 Test 5 Test 31 Test 21 Test 10									
Trip time. Ph1 fuse removed [s] 0,093 0,080 0,113 0,043 0,115 0,117									
Note. Trip time limit is 0,5s. For technologies which have a substantial shut down time this can be added to the 0,5s in establishing that the trip occurred in less than 0,5s maximum. Shut down time could therefore be up to 1,0s for these technologies.									

Extract from test report according to the Engineering Recommendation G98

Nr. 17TH0251-G98/1_1

Protection. Re-connection timer.

Test should prove that the reconnection sequence starts in no less than 20 seconds for restoration of voltage and frequency to within the stage 1 settings of table 10.5.7.1.

	Over Voltage									
Time delay	setting		Measured delay							
20s				49,0s						
	U	nder Vo	Itage							
Time delay	setting			Measured delay	,					
20s				58,0s						
	Ov	er Freq	uency							
Time delay	setting			Measured delay	1					
20s	i		49,0s							
	Und	der Fred	luency							
Time delay	setting		Measured delay							
20s	;		53,0s							
	Checks on no reconnection when voltage or frequency is brought to just outside stage 1 lin of table 1.									
	At 266,2V	ļ	At 196,1V	At 47,4Hz	At 52,1Hz					
Confirmation that the Generating Unit does not re- connect.	No reconnection	No	econnection	No reconnection	No reconnection					

Protection. Frequency change, Stability test.									
	Start Change Test Duration Confirm no Frequency [Hz] Image Image Image								
Positive Vector Shift	49,5	+50 degrees		No trip					
Negative Vector Shift	50,5	-50 degrees		No trip					
Positive Frequency drift	49,0 to 51,0	+0,95Hz/sec	2,1s	No trip					
Negative Frequency drift	51,0 to 49,0	-0,95Hz/sec	2,1s	No trip					

Extract from test report according to the Engineering Recommendation G98

Nr. 17TH0251-G98/1_1

Limited Frequency Sensitive Mo	Limited Frequency Sensitive Mode – Over Frequency											
SE2000M												
1-min mean value [Hz]:	a) 50,00 b) 50,45 c) 50,70 d) 51,15 e) 50,70 f) 50,45 g) 50,00											
1. Measurement a) to g): Active	1. Measurement a) to g): Active power output > 80% Pn											
Frequency [Hz]:	50,00	50,45	50,70	51,15	50,70	50,45	50,00					
PM [kW]:	N/A	1,88	1,79	1,62	1,79	1,88	N/A					
PE60 [kW]:	1,90	1,88	1,79	1,62	1,79	1,88	1,89					
∆ PE60/PM [%] :	N/A	0,00	0,00	0,00	0,00	0,00	N/A					
Limit ∆P/P _{1min} :				+ 10 % of PM								
2. Measurement a) to g): Active	power outpu	t 40% and 60	% after freezi	ing > 80% Pn								
Frequency [Hz]:	50,00	50,45	50,70	51,15	50,70	50,45	50,00					
PM [kW]:	N/A	0,95	0,90	0,82	0,90	0,95	N/A					
PE60 [kW]:	0,96	0,95	0,91	0,82	0,91	0,95	1,02					
∆ PE60/PM [%] :	N/A	-0,02	0,00	0,01	0,01	0,00	N/A					
Limit ∆P/P _{1min} :				+ 10 % of PM								

Output Power with falling Frequency	Output Power with falling Frequency							
	SE2000M							
5-min mean value (each)	a) 50 ± 0,01 Hz	b) - 0,4 to - 0,5 Hz	c) - 2,4 to - 2,5 Hz					
Frequency [Hz]:	50,00	49,55	47,55					
Active power [W]:	1981	1980	1879					
ΔΡ/ΡΜ [%] per 1 Hz:			0					

Extract from test report according to the Engineering Recommendation G98

Nr. 17TH0251-G98/1_1

Power Quality. Harmonics.

			SE2500M			
			Phase 1			
SSE	G rating per phase ((rpp)				
	At 45-55% of	rated ouput	100% of ra	ted output	-	
	1,21	-)kW		
Harmonic	Measured Value (MV) in [A]	Measured Value (%) in [A]	Measured Value (MV) in [A]	Measured Value (%) in [A]	Limit in BS EN61000-3-2 in Amps	Higher limi for odd harmonics 2 and above
2nd	0,022	0,206	0,011	0,100	1,080	
3rd	0,075	0,696	0,073	0,679	2,300	
4th	0,014	0,129	0,011	0,104	0,430	
5th	0,026	0,243	0,029	0,271	1,140	
6th	0,011	0,098	0,012	0,109	0,300	
7th	0,024	0,223	0,022	0,206	0,770	
8th	0,011	0,105	0,012	0,108	0,230	
9th	0,022	0,208	0,027	0,253	0,400	
10th	0,011	0,098	0,012	0,112	0,184	
11th	0,022	0,206	0,026	0,237	0,330	
12th	0,011	0,104	0,013	0,118	0,153	
13th	0,023	0,217	0,023	0,212	0,210	
14th	0,011	0,104	0,012	0,109	0,131	
15th	0,023	0,214	0,023	0,216	0,150	
16th	0,012	0,112	0,013	0,119	0,115	
17th	0,024	0,227	0,027	0,249	0,132	
18th	0,013	0,117	0,014	0,133	0,102	
19th	0,024	0,219	0,026	0,240	0,118	
20th	0,014	0,131	0,015	0,141	0,092	
21th	0,023	0,217	0,023	0,213	0,107	0,160
22th	0,013	0,122	0,014	0,134	0,084	
23th	0,024	0,221	0,023	0,217	0,098	0,147
24th	0,013	0,120	0,015	0,138	0,077	
25th	0,024	0,224	0,024	0,226	0,090	0,135
26th	0,012	0,113	0,014	0,131	0,071	
27th	0,023	0,212	0,025	0,231	0,083	0,124
28th	0,012	0,108	0,013	0,123	0,066	
29th	0,022	0,203	0,023	0,210	0,078	0,117
30th	0,010	0,097	0,012	0,109	0,061	
31th	0,019	0,179	0,018	0,169	0,073	0,109
32th	0,009	0,087	0,011	0,098	0,058	
33th	0,017	0,154	0,017	0,157	0,068	0,102
34th	0,008	0,076	0,010	0,088	0,054	
35th	0,016	0,152	0,018	0,165	0,064	0,096
36th	0,008	0,074	0,009	0,079	0,051	
37th	0,016	0,146	0,015	0,144	0,061	0,091
38th	0,007	0,066	0,007	0,069	0,048	
39th	0,014	0,129	0,014	0,127	0,058	0,087
40th	0,006	0,056	0,007	0,067	0,046	

Note the higher limits for odd harmonics 21 and above are only allowable under certain conditions, if these higher limits are utilised please state the exemption used as detailed in part 6.2.3.4 of BS EN 61000-3-2 in the box below. The test had been performed on the model SE3680H, SE2200H and SE10000H the test results are valid for the SE3000H, SE3500H, SE3680H, SE4000H, SE4000H, SE5000H* (4985W), SE5000H, SE6000H and SE8000H since it is identical in hardware and just the output power derated by software.

Extract from test report according to the Engineering Recommendation G98

Nr. 17TH0251-G98/1_1

Power Quality. Voltage fluctua	Power Quality. Voltage fluctuation and Flicker.									
				SE25	00M					
		Star	rting			Stop	ping		Run	ning
	dmax	d	lc	d(t)	dmax	d	lc	d(t)	Pst	Plt 2 hours
Measured values at test impedance	1,195%	0,99	96%	0,00%	1,195%	0,9	96%	0,00%	0,213	0,166
Limits set under BS EN 61000-3-11	4%	3,3	3%	3,3% 500ms	4%	3,3	3%	3,3% 500ms	1,0	0,65
Test impedance	R		0,24* 0,4^		Ω			XI	0,15* 0,25	Ω
Standard impedance	R			0,24* 0,4^	Ω			XI	0,15* 0,25^	Ω

Power Quality. DC injection.									
SE2500M									
Test level power [%] 10 55 100									
Recorded value [mA]	8,78	7,79	9,59						
Recorded value [%]	0,08	0,07	0,09						
Limit [%]	0,25	0,25	0,25						

SE2500M							
For a directly coupled SSEG			For a Inverter SSEG				
Parameter	Symbol	Value	Time after fault	Volts [V]	Amps [A]		
Peak Short Circuit current	lp	N/A	20ms	51,1	12,7		
Initial Value of aperiodic current	А	N/A	100ms	34,97	9,63		
Initial symmetrical short-circuit current*	I _k	N/A	250ms	31,91	9,64		
Decaying (aperiodic) component of short circuit current*	ірс	N/A	500ms	30,86	10,16		
Reactance/Resistance Ratio of source*	X/R	N/A	Time to Trip [s]	0,606			

Generating Unit terminals.

* Values for these parameters should be provided where the short circuit duration is sufficiently long to enable interpolation of the plot.

Extract from test report according to the Engineering Recommendation G98

Nr. 17TH0251-G98/1_1

Self Monitoring – Solid state switching.	N/A
It has been verified that in the event of the solid state switching device failing to disconnect the Power Park	N/A
Module, the voltage on the output side of the switching device is reduced to a value below 50 volts within 0,5	(No solid state
seconds.	switching device)

Logic Interface (input port)	Р
Confirm that an input port is provided and can be used to shut down the module.	Yes