

Form A2-3: Compliance Verification Report for Inverter Connected Power Generating Modules

This form should be used by the **Manufacturer** to demonstrate and declare compliance with the requirements of EREC G99.The form can be used in a variety of ways as detailed below:

1. To obtain Fully Type Tested status

The **Manufacturer** can use this form to obtain **Fully Type Tested** status for a **Power Generating Module** by registering this completed form with the Energy Networks Association (ENA) Type Test Verification Report Register.

2. To obtain Type Tested status for a product

This form can be used by the **Manufacturer** to obtain **Type Tested** status for a product which is used in a **Power Generating Module** by registering this form with the relevant parts completed with the Energy Networks Association (ENA) Type Test Verification Report Register.

3. One-off Installation

This form can be used by the **Manufacturer** or **Installer** to confirm that the **Power Generating Module** has been tested to satisfy all or part of the requirements of this EREC G99. This form must be submitted to the **DNO** as part of the application.

A combination of (2) and (3) can be used as required, together with Form A2-4 where compliance of the **Interface Protection** is to be demonstrated on site.

Note:

Within this Form A2-3 the term **Power Park Module** will be used but its meaning can be interpreted within Form A2-3 to mean **Power Park Module**, **Generating Unit or Inverter** as appropriate for the context. However, note that compliance must be demonstrated at the **Power Park Module** level.

If the **Power Generating Module** is **Fully Type Tested** and registered with the Energy Networks Association (ENA) Type Test Verification Report Register, the Installation Document (Form A3-1 or A3-2) should include the **Manufacturer's** reference number (the Product ID), and this form does not need to be submitted.

Where the **Power Generating Module** is not registered with the ENA Type Test Verification Report Register or is not **Fully Type Tested** this form (all or in parts as applicable) needs to be completed and provided to the **DNO**, to confirm that the **Power Generating Module** has been tested to satisfy all or part of the requirements of this EREC G99.

PGM technology		Photovoltaic Grid-tied inverter			
Manufacturer name		Solax power Co., Ltd			
Address		Room 220, West Building A, National University Science and Technology Park of Zhejiang University 525, Xixi Rd, Hangzhou, Zhejiang Province, China,310007			
Tel	+86(0571)-56260011	Web site	www.solaxpower.com		
E:mail	info@solaxpower.com				
Registere	d Capacity	4.6kW			
		5.0kW			

Type A Power Generating Modules

There are four options for Testing: (1) **Fully Type Tested**, (2) Partially **Type Tested**, (3) one-off installation, (4) tested on site at time of commissioning. The check box below indicates which tests in this Form have been completed for each of the options. With the exception of **Fully Type Tested PGMs** tests marked with * may be carried out at the time of commissioning (Form A4).

Tested option:	1. Fully Type Tested	2. Partially Type Tested	3. One-off Man. Info.	4. Tested on Site at time of Commission- ing
0. Fully Type Tested - all tests detailed below completed and evidence attached to this submission		N/A	N/A	N/A
1. Operating Range	N/A	~		
2. PQ – Harmonics		~		
3. PQ – Voltage Fluctuation and Flicker		~		
4. PQ – DC Injection (Power Park Modules only)		~		
5. Power Factor (PF)*		✓		
6. Frequency protection trip and ride through tests*		✓		
7. Voltage protection trip and ride through tests*		✓		
8. Protection – Loss of Mains Test*, Vector Shift and RoCoF Stability Test*		✓		
9.LFSM-O Test*		✓		
10. Protection – Reconnection Timer*		1		
11. Fault Level Contribution		~		
12. Self-monitoring Solid State Switch		N/A		
13. Wiring functional tests if required by para 15.2.1 (attach relevant schedule of tests)*		N/A		
14. Logic Interface (input port)*		✓		
* may be carried out at the time of commissioning (Form A.: Document reference(s) for Manufacturers' Information :	2-4).			

Type A Power Generating Modules

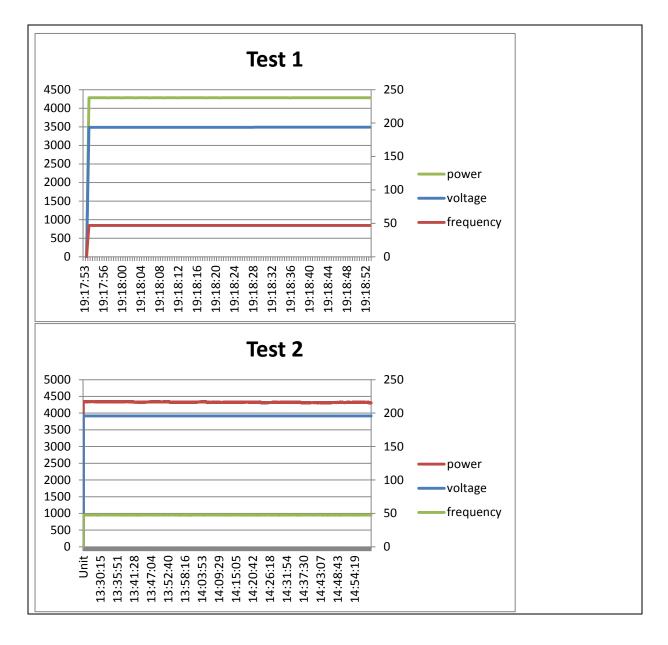
Type Test as stated i	ed Manufacturer	r 's reference nun prior to shipment	nber will be manufac to site and that no si	ts supplied by the company with the above tured and tested to ensure that they perform te Modifications are required to ensure that
Signed	Guo	Hnawei	On behalf of	Solax power Co., Ltd
Where par	ts of the testing a	re carried out by	persons or organisat	al component or by an external test house. ions other than the Manufacturer then that sults supplied to them to verify that the

testing has been carried out by people with sufficient technical competency to carry out the tests.

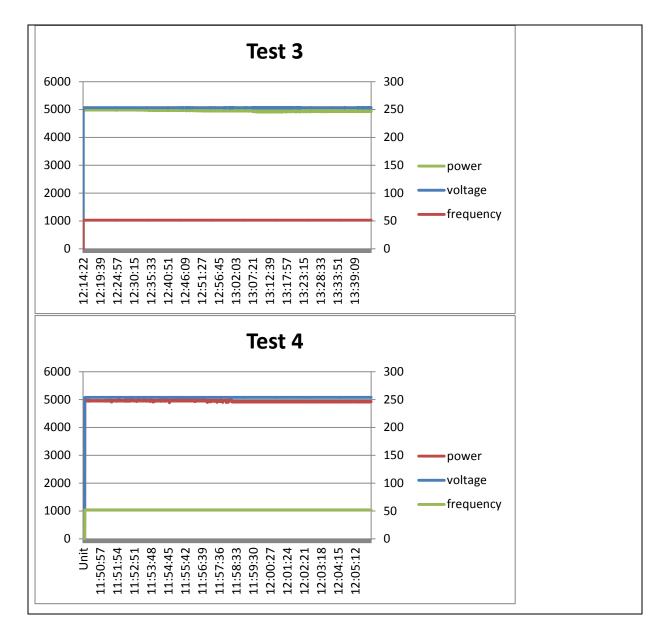
A2-3 Compliance Verification Report –Tests for Type A Inverter Connected Power Generating Modules – test record

1. Operating Range: Two tests should be carried with the **Power Generating Module** operating at **Registered Capacity** and connected to a suitable test supply or grid simulation set. The power supplied by the primary source shall be kept stable within ± 5 % of the apparent power value set for the entire duration of each test sequence.

Frequency, voltage and **Active Power** measurements at the output terminals of the **Power Generating Module** shall be recorded every second. The tests will verify that the **Power Generating Module** can operate within the required ranges for the specified period of time.


The Interface Protection shall be disabled during the tests.

In case of a PV Power Park Module the PV primary source may be replaced by a DC source.


In case of a full converter **Power Park Module** (eg wind) the primary source and the prime mover **Inverter**/rectifier may be replaced by a DC source.

Test 1 Voltage = 85% of nominal (195.5 V), Frequency = 47 Hz, Power Factor = 1, Period of test 20s	
Test 2 Voltage = 85% of nominal (195.5 V), Frequency = 47.5 Hz, Power Factor = 1, Period of test 90 minutes	
Test 3 Voltage = 110% of nominal (253 V)., Frequency = 51.5 Hz, Power Factor = 1, Period of test 90 minutes	
Test 4 Voltage = 110% of nominal (253 V), Frequency = 52.0 Hz, Power Factor = 1, Period of test 15 minutes	

2. Power Quality – Harmonics:

For **Power Generating Modules** of **Registered Capacity** of less than 75 A per phase (ie 50 kW) the test requirements are specified in Annex A.7.1.5. These tests should be carried out as specified in BS EN 61000-3-12The results need to comply with the limits of Table2 of BS EN 61000-3-12 for single phase equipment and Table 3 of BS EN 610000-3-12 for three phase equipment.

Power Generating Modules with emissions close to the limits laid down in BS EN 61000-3-12 may require the installation of a transformer between 2 and 4 times the rating of the **Power Generating Module** in order to accept the connection to a **Distribution Network**.

For **Power Generating Modules** of **Registered Capacity** of greater than 75 A per phase (ie 50 kW) the installation must be designed in accordance with EREC G5.

Power Generating Module tested to BS EN 61000-3-12

Power Generating Module rating per phase (rpp)		4.6	kVA	Harmonic % = Measured Va (A) x 23/rating per phase (k		
Harmonic	onic At 45-55% of Registered Capacity		100% of Regist Capacity	ered	Limit in BS EN 6	1000-3-12
	Measured Value MV in Amps	%	Measured Value MV in Amps	%	1 phase	3 phase
2	0.0324	0.1620%	0.1079	0.5395%	8%	8%
3	0.1910	0.9550%	0.2048	1.0240%	21.6%	Not stated
4	0.0282	0.1410%	0.0375	0.1875%	4%	4%
5	0.0927	0.4635%	0.0666	0.3330%	10.7%	10.7%
6	0.0069	0.0345%	0.0133	0.0665%	2.67%	2.67%
7	0.0506	0.2530%	0.0279	0.1395%	7.2%	7.2%
8	0.0068	0.0340%	0.0118	0.0590%	2%	2%
9	0.0447	0.2235%	0.0266	0.1330%	3.8%	Not stated
10	0.0049	0.0245%	0.0074	0.0370%	1.6%	1.6%
11	0.0235	0.1175%	0.0259	0.1295%	3.1%	3.1%
12	0.0077	0.0385%	0.0072	0.0360%	1.33%	1.33%
13	0.0306	0.1530%	0.0210	0.1050%	2%	2%
THD ¹		2.0%		1.03%	23%	13%
PWHD ²					23%	22%

¹ THD = Total Harmonic Distortion

2. Power Quality – Harmonics:

For **Power Generating Modules** of **Registered Capacity** of less than 75 A per phase (ie 50 kW) the test requirements are specified in Annex A.7.1.5. These tests should be carried out as specified in BS EN 61000-3-12The results need to comply with the limits of Table2 of BS EN 61000-3-12 for single phase equipment and Table 3 of BS EN 610000-3-12 for three phase equipment.

Power Generating Modules with emissions close to the limits laid down in BS EN 61000-3-12 may require the installation of a transformer between 2 and 4 times the rating of the **Power Generating Module** in order to accept the connection to a **Distribution Network**.

For **Power Generating Modules** of **Registered Capacity** of greater than 75 A per phase (ie 50 kW) the installation must be designed in accordance with EREC G5.

Power Generating Module tested to BS EN 61000-3-12

Power Generating Module rating per phase (rpp)		5.0	kVA	Harmonic % = Measured Value (A) x 23/rating per phase (kVA		
Harmonic	onic At 45-55% of Registered Capacity		100% of Regist Capacity	ered	Limit in BS EN 61000-3-12	
	Measured Value MV in Amps	%	Measured Value MV in Amps	%	1 phase	3 phase
2	0.0450	0.2070%	0.1105	0.5083%	8%	8%
3	0.1659	0.7631%	0.1955	0.8993%	21.6%	Not stated
4	0.0259	0.1191%	0.0332	0.1527%	4%	4%
5	0.0833	0.3832%	0.0657	0.3022%	10.7%	10.7%
6	0.0056	0.0258%	0.0095	0.0437%	2.67%	2.67%
7	0.0447	0.2056%	0.0226	0.1040%	7.2%	7.2%
8	0.0073	0.0336%	0.0077	0.0354%	2%	2%
9	0.0405	0.1863%	0.0226	0.1040%	3.8%	Not stated
10	0.0037	0.0170%	0.0066	0.0304%	1.6%	1.6%
11	0.0200	0.0920%	0.0250	0.1150%	3.1%	3.1%
12	0.0050	0.0230%	0.0065	0.0299%	1.33%	1.33%
13	0.0291	0.1339%	0.0196	0.0902%	2%	2%
THD ¹		1.72%		0.98%	23%	13%
PWHD ²					23%	22%

3. Power Quality – Voltage fluctuations and Flicker:

For **Power Generating Modules** of **Registered Capacity** of less than 75 A per phase (ie 50 kW) these tests should be undertaken in accordance with Annex A.7.1.4.3. Results should be normalised to a standard source impedance, or if this results in figures above the limits set in BS EN 61000-3-11 to a suitable Maximum Impedance.

For **Power Generating Modules** of **Registered Capacity** of greater than 75 A per phase (ie 50 kW) the installation must be designed in accordance with EREC P28.

	Starting			Stopping	Stopping			Running	
	d max	dc	d(t)	d max	dc	d(t)	P st	P It 2 hours	
Measured Values at test impedance	0.63%	0.04%	0%	0.1%	0.09%	0%	0.29	0.16	
Normalised to standard impedance	NA	NA	NA	NA	NA	NA	NA	NA	
Normalised to required maximum impedance	NA	NA	NA	NA	NA	NA	NA	NA	
Limits set under BS EN 61000-3-11	4%	3.3%	3.3%	4%	3.3%	3.3%	1.0	0.65	
Test Impedance)	R			Ω	XI		Ω	
Standard Imped	Standard Impedance		0.24 * 0.4 ^		Ω	XI	0.15 * 0.25 ^	Ω	
Maximum Imped	dance	R			Ω	XI		Ω	

* Applies to three phase and split single phase **Power Generating Modules.**

^ Applies to single phase **Power Generating Module** and **Power Generating Modules** using two phases on a three phase system

For voltage change and flicker measurements the following formula is to be used to convert the measured values to the normalised values where the **Power Factor** of the generation output is 0.98 or above.

Normalised value = Measured value x reference source resistance/measured source resistance at test point

Single phase units reference source resistance is 0.4 Ω

Two phase units in a three phase system reference source resistance is 0.4 $\boldsymbol{\Omega}$

Two phase units in a split phase system reference source resistance is 0.24 $\boldsymbol{\Omega}$

Three phase units reference source resistance is 0.24 Ω

Where the **Power Factor** of the output is under 0.98 then the XI to R ratio of the test impedance should be close to that of the Standard Impedance.

The stopping test should be a trip from full load operation.

The duration of these tests need to comply with the particular requirements set out in the testing notes for the technology under test. Dates and location of the test need to be noted below

Test start date	2017-05-10	Test end date	2017-05-10
Test location	Building 4, No. 518, Xinzhuai Shanghai, P.R. China (201705)	n Road, Caohejing Songjiang Hig	h- Tech Park,

4. Power quality – DC injection: The tests should be carried out on a single **Generating Unit**. Tests are to be carried out at three defined power levels $\pm 5\%$. At 230 V a 50 kW three phase **Inverter** has a current output of 217 A so DC limit is 543 mA. These tests should be undertaken in accordance with Annex A.7.1.4.4.

4.6K							
Test power level	10%	55%	100%				
Recorded value in Amps	0.0038	0.0080	0.0102				
as % of rated AC current	0.02%	0.04%	0.05%				
Limit	0.25%	0.25%	0.25%				

4. Power quality – DC injection: The tests should be carried out on a single Generating Unit. Tests are to be carried out at three defined power levels $\pm 5\%$. At 230 V a 50 kW three phase Inverter has a current output of 217 A so DC limit is 543 mA. These tests should be undertaken in accordance with Annex A.7.1.4.4.

5.0K							
Test power level	10%	55%	100%				
Recorded value in Amps	0.0028	0.0066	0.0063				
as % of rated AC current	0.01%	0.03%	0.03%				
Limit	0.25%	0.25%	0.25%				

5. Power Factor: The tests should be carried out on a single Power Generating Module. Tests are to be carried out at three voltage levels and at **Registered Capacity**. Voltage to be maintained within $\pm 1.5\%$ of the stated level during the test. These tests should be undertaken in accordance with Annex A.7.1.4.2.

	4.6K		
Voltage	0.94 pu (216.2 V)	1 pu (230 V)	1.1 pu (253 V)
Measured value	0.999	0.999	0.999

Type A Power Generating Modules

Power Factor Limit			>0.95 >0.95			>0.95			
carried out at		levels and	d at I	Registered Ca	apacity	. Voltag	ge to be mair	ntaineo	e. Tests are to be d within ±1.5% of x A.7.1.4.2.
				5.0K					
Voltage			0.94	4 pu (216.2 V)		1 pu (2	230 V)	1.1 p	u (253 V)
Measured val	lue		0.99	99		0,999		0.999	9
Power Facto	r Limit		>0.9	95		>0.95		>0.95	5
6. Protection A.7.1.2.3.	n – Frequenc	y tests:	Thes	se tests shou	d be (carried	out in accor	dance	with the Annex
Function	Setting			Trip test			"No trip tests"		
	Frequency	Time de	lay	Frequency	Time	e delay Frequency		/time	Confirm no trip
LI/E atoms 4	47.5 Hz	20 s		47.49hz 20		s 47.7 Hz 25 s			no trip
U/F stage 1	11.0112						25 s		
U/F stage 1	47 Hz	0.5 s		46.95hz	0.561	ls	25 s 47.2 Hz 19.98 s		no trip
		0.5 s		46.95hz	0.561	S	47.2 Hz		no trip no trip
		0.5 s 0.5 s		46.95hz 52.03hz	0.561	-	47.2 Hz 19.98 s 46.8 Hz		

ensure that the protection will not trip in error.

7. Protection – Voltage tests: These tests should be carried out in accordance with Annex A.7.1.2.2.

Function	Setting		Trip test		"No trip tests"		
	Voltage	Time delay	Voltage	Time delay	Voltage /time	Confirm no trip	
U/V	0.8 pu (184 V)	2.5 s	183.3v	2.58s	188 V 3.50 s	no trip	
					180 V 2.48 s	no trip	

						r		1		
O/V stage 1	1.14 pu (262.2 V)	1.0 s	263.4v	1.0 ⁻	7s	258.2 2.0 s		no trip		
O/V stage 2	1.19 pu (273.7 V)	0.5 s	274.9v	0.5	73s	269. 0.98		no trip		
						277. 0.48		no trip		
Note for Voltage tests the Voltage required to trip is the setting ± 3.45 V. The time delay can be measured at a larger deviation than the minimum required to operate the protection. The No trip tests need to be carried out at the setting ± 4 V and for the relevant times as shown in the table above to ensure that the protection will not trip in error.										
8. Protection Annex A.7.1.2		iins test: The	se tests sh	ould be	carried ou	it in ac	cordance wit	th BS EN 62116.		
The following sub set of tests should be recorded in the following table.										
Test Power an imbalance	d 33% -5% Q Test 22	66% -5% Q Test 12	-5%	0% 6 P st 5	33% +5% Q Test 31		66% +5% Q Test 21	100% +5% P Test 10		
Trip time. Limit is 0.5s	0.122	s 0.382s	0.3	342s	0.17	73s 0.196s		0.166s		
Loss of Mains Protection, Vector Shift Stability test. This test should be carried out in accordance with Annex A.7.1.2.6.										
		Start Frequency Change			Confirm no trip					
Positive Vecto	49.5 Hz	49.5 Hz		⊦50 degrees		no trip				
Negative Vector	50.5 Hz	50.5 Hz		50 degrees		no trip				
Loss of Mains A.7.1.2.6.	s Protection,	RoCoF Stabili	ty test: Th	is test sł	nould be c	arried	out in accord	lance with Annex		
Ramp range	Test frequ	Test frequency ramp:			Test Duration		Confirm no trip			
49.0 Hz to 51.0 Hz	+0.95 Hzs	+0.95 Hzs ⁻¹		2.1 s		no trip				
51.0 Hz to 49.0 Hz	-0.95 Hzs	-0.95 Hzs ⁻¹		2.1 s		no trip				

specific threshold	frequency of 50.4 Hz		e st: The test should be o	carried out using the			
Active Power rest injection tests are	Y						
Alternatively, simulation results should be noted below:							
Test sequence at Registered Capacity >80%	Measured Active Power Output	Frequency	Primary Power Source	Active Power Gradient			
Step a) 50.00Hz ±0.01Hz	5010	50.00		-			
Step b) 50.45Hz ±0.05Hz	4946	50.45		-			
Step c) 50.70Hz ±0.10Hz	4714	50.70		-			
Step d) 51.15Hz ±0.05Hz	4288	51.15		-			
Step e) 50.70Hz ±0.10Hz	4676	50.70		-			
Step f) 50.45Hz ±0.05Hz	4916	50.45	-	-			
Step g) 50.00Hz ±0.01Hz	5004	50.00	-				
Test sequence at Registered Capacity 40% - 60%	Measured Active Power Output	Frequency	Primary Power Source	e Active Power Gradient			
Step a) 50.00Hz ±0.01Hz	2530	50.00		-			
Step b) 50.45Hz ±0.05Hz	2499	50.45		-			
Step c) 50.70Hz ±0.10Hz	2386	50.70		-			
Step d) 51.15Hz ±0.05Hz	2175	51.15		-			
Step e) 50.70Hz ±0.10Hz	2358	50.70		-			

voltage and frequencyTime delay settingMeasure delay30s35s30s35sConfirmation that the Power Generating Module does not re- connect.It fault level contrilfor Inverter outputTime after fault20ms100ms250ms500ms500ms100ms11. Self-Monitoring sIt has been verified th the Power Park Mode a value below 50 volts13. Wiring functional Confirm that the relect commissioning)14. Logic interface (in	connection timer.						
setting delay 30s 35s Confirmation that the Power Generating Module does not re- connect. In Fault lever contril 11. Fault lever output In For Inverter output In Time after fault In 20ms In 100ms In 250ms In 500ms In Time to trip In 12. Self-Monitoring s In It has been verified the the Power Park Mode a value below 50 volts In 13. Wiring functional Confirm that the releader of the relation o	at the reconnection sequences to within the stage 1 sequences 1 sequences 1 sequences 1 sequences 1 sequences 2 se		minimum	n delay of 2	20 s for	restoration of	
Confirmation that the Power Generating Module does not reconnect. 11. Fault level contril For Inverter output Time after fault 20ms 100ms 250ms 500ms Time to trip 12. Self-Monitoring s It has been verified the the Power Park Modula a value below 50 volts 13. Wiring functional Confirm that the releacements of the releacements of the selecements of the seleceme		Checks on no reconnection when voltage or frequency is brought to just outside stage 1 limits of Table 10.1.					
Power Generating Module does not re- connect.11. Fault level contrilFor Inverter outputTime after fault20ms100ms250ms500msTime to trip12. Self-Monitoring sIt has been verified th the Power Park Mode a value below 50 volts13. Wiring functionalConfirm that the relect commissioning)14. Logic interface (in	At 1.16 pu (266.2 V)	At 0.85 pu (196.1 V) At 47.4 Hz			At 52.1 Hz		
For Inverter output Time after fault 20ms 100ms 250ms 500ms Time to trip 12. Self-Monitoring s It has been verified th the Power Park Modu a value below 50 volts 13. Wiring functional Confirm that the rele commissioning) 14. Logic interface (in	No-reconnection	No-reconnection	No-reconnection		No-reconnection		
Time after fault 20ms 100ms 250ms 500ms Time to trip 12. Self-Monitoring s It has been verified th the Power Park Mode a value below 50 volts 13. Wiring functional Confirm that the release commissioning)	bution: These tests sha	Il be carried out in ac	cordance	e with ERE	C G99 A	nnex A.7.1.5.	
20ms 100ms 250ms 500ms Time to trip 12. Self-Monitoring s It has been verified th the Power Park Mode a value below 50 volts 13. Wiring functional Confirm that the rele commissioning) 14. Logic interface (in							
100ms 250ms 500ms Time to trip 12. Self-Monitoring s It has been verified th the Power Park Mode a value below 50 volts 13. Wiring functional Confirm that the relect commissioning) 14. Logic interface (in		Volts		Amps			
250ms 500ms Time to trip 12. Self-Monitoring s It has been verified th the Power Park Mode a value below 50 volts 13. Wiring functional Confirm that the rele commissioning) 14. Logic interface (in	20ms			28.6A			
500ms Time to trip 12. Self-Monitoring s It has been verified th the Power Park Mode a value below 50 volts 13. Wiring functional Confirm that the release commissioning) 14. Logic interface (in	100ms			NA			
Time to trip 12. Self-Monitoring s It has been verified th the Power Park Mode a value below 50 volts 13. Wiring functional Confirm that the rele commissioning) 14. Logic interface (in	250ms			NA			
 12. Self-Monitoring s It has been verified th the Power Park Mode a value below 50 volts 13. Wiring functional Confirm that the relector commissioning) 14. Logic interface (in the selector) 	500ms			NA			
It has been verified th the Power Park Mode a value below 50 volts 13. Wiring functional Confirm that the rele commissioning) 14. Logic interface (in	Time to trip			In second	nds		
the Power Park Mode a value below 50 volts 13. Wiring functional Confirm that the rele commissioning) 14. Logic interface (in	olid state switching: N	lo specified test requi	rements	. Refer to A	nnex A.7	7.1.7.	
Confirm that the rele commissioning) 14. Logic interface (in	It has been verified that in the event of the solid state switching device failing to disconnect the Power Park Module , the voltage on the output side of the switching device is reduced to a value below 50 volts within 0.5 s.						
commissioning) 14. Logic interface (in	tests: If required by pa	ra 15.2.1.					
- · ·	Confirm that the relevant test schedule is attached (tests to be undertaken at time of NA commissioning)						
Confirm that an input p	nput port).						
	Confirm that an input port is provided and can be used to shut down the module.						
Additional comments.							