

Form A2-3: Compliance Verification Report for Inverter Connected Power Generating Modules

This form should be used by the **Manufacturer** to demonstrate and declare compliance with the requirements of EREC G99. The form can be used in a variety of ways as detailed below:

1. To obtain Fully Type Tested status

The **Manufacturer** can use this form to obtain **Fully Type Tested** status for a **Power Generating Module** by registering this completed form with the Energy Networks Association (ENA) Type Test Verification Report Register.

2. To obtain Type Tested status for a product

This form can be used by the **Manufacturer** to obtain **Type Tested** status for a product which is used in a **Power Generating Module** by registering this form with the relevant parts completed with the Energy Networks Association (ENA) Type Test Verification Report Register.

3. One-off Installation

This form can be used by the **Manufacturer** or **Installer** to confirm that the **Power Generating Module** has been tested to satisfy all or part of the requirements of this EREC G99. This form must be submitted to the **DNO** as part of the application.

A combination of (2) and (3) can be used as required, together with Form A2-4 where compliance of the **Interface Protection** is to be demonstrated on site.

Note:

Within this Form A2-3 the term **Power Park Module** will be used but its meaning can be interpreted within Form A2-3 to mean **Power Park Module**, **Generating Unit or Inverter** as appropriate for the context. However, note that compliance must be demonstrated at the **Power Park Module** level.

If the **Power Generating Module** is **Fully Type Tested** and registered with the Energy Networks Association (ENA) Type Test Verification Report Register, the Installation Document (Form A3-1 or A3-2) should include the **Manufacturer's** reference number (the Product ID), and this form does not need to be submitted.

Where the **Power Generating Module** is not registered with the ENA Type Test Verification Report Register or is not **Fully Type Tested** this form (all or in parts as applicable) needs to be completed and provided to the **DNO**, to confirm that the **Power Generating Module** has been tested to satisfy all or part of the requirements of this EREC G99.

Manufacturer's reference number		DQ2005002-01				
PGM technology			Solis-100K -5G			
Manufacturer name		Ningbo Ginlong Technologies Co., Ltd.				
Address		No. 57 Jintong Road, Seafront (Binhai) Industrial Park, Xiangshan, Ningbo, Zhejiang, 315712,P.R.China				
Tel	(+86) 574 6580 3377	Web site	www.ginlong.com			
E:mail	kun.zhang@ginlong.com					
Registered Capacity			110kVA			

Engineering Recommendation G99 Form A2-3

Type A Power Generating Modules

Γ

	Dne-off 4. Tested on n. Info. Site at time of Commission ing
Type Tested- all tests detailed below completed ence attached to this submissionYesN/A	N/A N/A
iting Range	
Harmonics	1000
Voltage Fluctuation and Flicker	
DC Injection (Power Park Modules only)	
r Factor (PF)*	
ency protection tripand ride through tests*	
e protectiontrip and ride through tests*	
ction – Loss of Mains Test*, Vector Shift and N/A Stability Test*	
•O Test*	
ection – Reconnection Timer*	
: Level Contribution	
monitoring Solid State Switch	
g functional tests if required by para 15.2.1 ch relevant schedule of tests)*	
c Interface (input port)*	
ch relevant schedule of tests)*	

Manufacturer compliance declaration. - I certify that all products supplied by the company with the above **Type Tested Manufacturer's** reference number will be manufactured and tested to ensure that they perform as stated in this document, prior to shipment to site and that no site **Modifications** are required to ensure that the product meets all the requirements of EREC G99.

Signed	Pan Ru Ji	On behalf of Manufacturer stamp	学波锦浪新能源科教 OCOGIES CO., LIC NINGBO GINLONG TECHNOLOGIES CO., LIC
--------	-----------	------------------------------------	--

Note that testing can be done by the Manufacturer of an individual component or by an external test house.

Where parts of the testing are carried out by persons or organisations other than the **Manufacturer** then that person or organisation shall keep copies of all test records and results supplied to them to verify that the testing has been carried out by people with sufficient technical competency to carry out the tests.

A2-3 Compliance Verification Report –Tests for Type A Inverter Connected Power Generating Modules – test record

1. Operating Range: Two tests should be carried with the **Power Generating Module** operating at **Registered Capacity** and connected to a suitable test supply or grid simulation set. The power supplied by the primary source shall be kept stable within ± 5 % of the apparent power value set for the entire duration of each test sequence.

Frequency, voltage and **Active Power** measurements at the output terminals of the **Power Generating Module** shall be recorded every second. The tests will verify that the **Power Generating Module** can operate within the required ranges for the specified period of time.

The Interface Protection shall be disabled during the tests.

In case of a PV **Power Park Module** the PV primary source may be replaced by a DC source.

In case of a full converter **Power Park Module**(eg wind) the primary source and the prime mover **Inverter**/rectifier may be replaced by a DC source.

Test 1 Voltage = 85% of nominal (195.5 V), Frequency = 47 Hz, Power Factor = 1, Period of test 20s	Tested with the specified conditions,in the 20 seconds period of time,the inverters operate normally
Test 2 Voltage = 85% of nominal (195.5 V), Frequency = 47.5 Hz, Power Factor = 1, Period of test 90 minutes	Tested with the specified conditions, in the 90 minutes period of time, the inverters operate normally
Test 3 Voltage = 110% of nominal (253 V)., Frequency = 51.5 Hz, Power Factor = 1, Period of test 90 minutes	Tested with the specified conditions,in the 90 minutes period of time,the inverters operate normally
Test 4 Voltage = 110% of nominal (253 V), Frequency = 52.0 Hz, Power Factor = 1, Period of test 15 minutes	Tested with the specified conditions, in the 15 minutes period of time, the inverters operate normally
Test 5 RoCoF withstand Confirm that the Power Generating Module is capable of staying connected to the Distribution Network and operate at rates of change of frequency up to 1 Hzs ⁻¹ as measured over a period of 500 ms. Note that this is not expected to be demonstrated on site.	Tested with the specified conditions,the inverters operate normally

2. Power Quality – Harmonics:

For **Power Generating Modules** of **Registered Capacity** of less than 75A per phase (ie 50kW) the test requirements are specified in Annex A.7.1.5. These tests should be carried out as specified in BS EN 61000-3-12The results need to comply with the limits of Table2 of BS EN 61000-3-12 for single phase equipment and Table 3 of BS EN 610000-3-12 for three phase equipment.

Power Generating Modules with emissions close to the limits laid down in BS EN 61000-3-12 may require the installation of a transformer between 2 and 4 times the rating of the **Power Generating Module** in order to accept the connection to a **Distribution Network**.

For **Power Generating Modules** of **Registered Capacity** of greater than 75A per phase (ie 50kW) the installation must be designed in accordance with EREC G5.

Power Generating Module tested to EREC G5

Power Generating Module rating per phase (rpp)		33.33	kVA	Harmonic % = Measured Value (A) x 23/rating per phase (kVA)			
Harmonic	At 45-55% of R Capacity	egistered	100% of Registere	ed Capacity			
	Measured % Value MV in Amps		Measured Value MV in Amps	%	Limit in EREC G5		
			Phase 1	1			
2	0.1118	0.0772	0.2383	0.1645	1.6%		
3	0.1317	0.0909	0.1739	0.1200	4%		
4	0.2004	0.1383	0.2781	0.1919	1.0%		
5	0.7796	0.5379	1.6213	1.1188	4%		
6	0.0521	0.0359	0.0657	0.0453	0.5%		
7	0.7727	0.5332	1.2193	0.8414	4%		
8	0.0940	0.0649	0.1136	0.0784	0.4%		
9	0.0404	0.0279	0.0509	0.0351	1.2%		
10	0.1369	0.0945	0.1817	0.1254	0.4%		
11	0.2364	0.1631	0.3516	0.2426	3%		
12	0.0466	0.0322	0.0716	0.0494	0.2%		
13	0.4008	0.2766	0.5521	0.3810	2.5%		
14	0.0926	0.0639	0.1098	0.0757	0.2%		
15	0.0535	0.0369	0.0647	0.0446	0.3%		

16	0.0974	0.0672	0.1339	0.0924	0.2%
17	0.3430	0.2367	0.3857	0.2662	1.6%
18	0.0627	0.0433	0.0749 0.0517		0.2%
19	0.1341	0.0925	0.1142	0.0788	1.2%
20	0.1068	0.0737	0.1355	0.0935	0.2%
21	0.0689	0.0475	0.0781	0.0539	0.2%
22	0.0793	0.0548	0.1279	0.0883	0.2%
23	0.4244	0.2928	0.5190	0.3581	1.2%
24	0.0733	0.0506	0.0854	0.0589	0.2%
25	0.2701	0.1864	0.3268	0.2255	0.7%
THD ¹		0.9677		1.6024	5%
	_	1	Phase 2		
Harmonic	At 45-55% of R	egistered	100% of Registere	d Conscitu	Limit in EREC G5
	Capacity		100 % OF Registere	ed Capacity	
	Capacity Measured Value MV in Amps	%	Measured Value MV in Amps	%	-
2	Measured Value MV in	% 0.1696	Measured Value		1.6%
2 3	Measured Value MV in Amps		Measured Value MV in Amps	%	 1.6%
	Measured Value MV in Amps 0.2457	0.1696	Measured Value MV in Amps 0.3631	0.2505	
3	Measured Value MV in Amps 0.2457 0.1415	0.1696	Measured Value MV in Amps 0.3631 0.1844	% 0.2505 0.1272	4%
3 4	Measured Value MV in Amps 0.2457 0.1415 0.3076	0.1696 0.0977 0.2122	Measured Value MV in Amps 0.3631 0.1844 0.3843	% 0.2505 0.1272 0.2652	4%
3 4 5	Measured Value MV in Amps 0.2457 0.1415 0.3076 0.6883	0.1696 0.0977 0.2122 0.4750	Measured Value MV in Amps 0.3631 0.1844 0.3843 1.5089	% 0.2505 0.1272 0.2652 1.0413	4% 1.0% 4%
3 4 5 6	Measured Value MV in Amps 0.2457 0.1415 0.3076 0.6883 0.0560	0.1696 0.0977 0.2122 0.4750 0.0386	Measured Value MV in Amps 0.3631 0.1844 0.3843 1.5089 0.0643	% 0.2505 0.1272 0.2652 1.0413 0.0444	4% 1.0% 4% 0.5%
3 4 5 6 7	Measured Value MV in Amps 0.2457 0.1415 0.3076 0.6883 0.0560 0.8023	0.1696 0.0977 0.2122 0.4750 0.0386 0.5537	Measured Value MV in Amps 0.3631 0.1844 0.3843 1.5089 0.0643 1.2293	% 0.2505 0.1272 0.2652 1.0413 0.0444 0.8483	4% 1.0% 4% 0.5% 4%
3 4 5 6 7 8	Measured Value MV in Amps 0.2457 0.1415 0.3076 0.6883 0.0560 0.8023 0.0771	0.1696 0.0977 0.2122 0.4750 0.0386 0.5537 0.0532	Measured Value MV in Amps 0.3631 0.1844 0.3843 1.5089 0.0643 1.2293 0.0995	% 0.2505 0.1272 0.2652 1.0413 0.0444 0.8483 0.0687	4% 1.0% 4% 0.5% 4% 0.4%

¹ THD = Total Harmonic Distortion

0.0571	0.0394	0.0603	0.0416	0.2%
0.4170	0.2878	0.5800	0.4002	2.5%
0.0725	0.0500	0.1183	0.0816	0.2%
0.0618	0.0427	0.0684	0.0472	0.3%
0.0837	0.0578	0.1457	0.1005	0.2%
0.3268	0.2255	0.3730	0.2574	1.6%
0.0649	0.0448	0.0776	0.0535	0.2%
0.1372	0.0947	0.1285	0.0887	1.2%
0.1130	0.0780	0.1440	0.0994	0.2%
0.0748	0.0516	0.0909	0.0627	0.2%
0.0893	0.0616	0.1267	0.0874	0.2%
0.4206	0.2903	0.4942	0.3410	1.2%
0.0769	0.0531	0.0985	0.0679	0.2%
0.2815	0.1943	0.3296	0.2274	0.7%
	0.9725		1.5749	5%
		Phase 3		
At 45-55% of Re Capacity	egistered	100% of Registere	d Capacity	Limit in EREC G5
Measured Value MV in Amps	%	Measured Value MV in Amps		
0.1665	0.1149	0.2196	0.1515	1.6%
0.1154	0.0796	0.1847	0.1275	4%
0.2235	0.1542	0.2662	0.1837	1.0%
1	1			4%
0.6766	0.4669	1.5012	1.0359	4%
0.6766	0.4669 0.0308	1.5012 0.0521	1.0359 0.0359	0.5%
	0.4170 0.0725 0.0618 0.0837 0.3268 0.0649 0.1372 0.1130 0.0748 0.0893 0.4206 0.0769 0.2815 At 45-55% of Recapacity Measured Value MV in Amps 0.1665 0.1154	0.4170 0.2878 0.0725 0.0500 0.0618 0.0427 0.0837 0.0578 0.3268 0.2255 0.0649 0.0448 0.1372 0.0947 0.1130 0.0780 0.0748 0.0516 0.0893 0.0616 0.02903 0.0616 0.2815 0.1943 0.2815 0.1943 0.2815 0.1943 0.2815 0.1943 0.0769 0.0531 0.2815 0.1943 0.1154 0.0796 0.1154 0.0796	0.4170 0.2878 0.5800 0.0725 0.0500 0.1183 0.0618 0.0427 0.0684 0.0837 0.0578 0.1457 0.3268 0.2255 0.3730 0.0649 0.0448 0.0776 0.1372 0.0947 0.1285 0.1372 0.0947 0.1285 0.1130 0.0780 0.1440 0.0748 0.0516 0.0909 0.0893 0.0616 0.1267 0.4206 0.2903 0.4942 0.0769 0.0531 0.0985 0.2815 0.1943 0.3296 0.9725 Phase 3 At 45-55% of Registered Capacity 100% of Registere Value MV in Amps Measured Value MV in Amps % Measured Value MV in Amps 0.1665 0.1149 0.2196 0.1154 0.0796 0.1847 0.2235 0.1542 0.2662	0.4170 0.2878 0.5800 0.4002 0.0725 0.0500 0.1183 0.0816 0.0618 0.0427 0.0684 0.0472 0.0837 0.0578 0.1457 0.1005 0.3268 0.2255 0.3730 0.2574 0.0649 0.0448 0.0776 0.0535 0.1372 0.0947 0.1285 0.0887 0.1372 0.0947 0.1285 0.0887 0.1372 0.0947 0.1285 0.0887 0.1372 0.0947 0.1285 0.0887 0.1372 0.0947 0.1285 0.0887 0.1372 0.0947 0.1285 0.0887 0.1370 0.0780 0.1440 0.0994 0.0748 0.0516 0.1420 0.0627 0.0893 0.0616 0.1267 0.0874 0.4206 0.2903 0.4942 0.3410 0.2815 0.1943 0.3296 0.2274 0.9725

² THD = Total Harmonic Distortion

8	0.0596	0.0411	0.0675	0.0466	0.4%
9	0.0416	0.0287	0.0515	0.0355	1.2%
10	0.1077	0.0743	0.1892	0.1306	0.4%
11	0.2340	0.1615	0.3448	0.2379	3%
12	0.0581	0.0401	0.0590	0.0407	0.2%
13	0.3973	0.2742	0.5637	0.3890	2.5%
14	0.0648	0.0447	0.0845	0.0583	0.2%
15	0.0535	0.0369	0.0610	0.0421	0.3%
16	0.0866	0.0598	0.1076	0.0743	0.2%
17	0.3288	0.2269	0.3959	0.2732	1.6%
18	0.0665	0.0459	0.0701	0.0484	0.2%
19	0.1244	0.0858	0.1146	0.0791	1.2%
20	0.0969	0.0669	0.1367	0.0943	0.2%
21	0.0814	0.0562	0.0797	0.0550	0.2%
22	0.0881	0.0608	0.0945	0.0652	0.2%
23	0.4134	0.2853	0.5111	0.3527	1.2%
24	0.0712	0.0492	0.0915	0.0631	0.2%
25	0.3079	0.2125	0.3557	0.2455	0.7%
THD ³		0.9401		1.5598	5%
	I			1	1

3. Power Quality – Voltage fluctuations and Flicker:

For **Power Generating Modules** of **Registered Capacity** of less than 75 A per phase (ie 50 kW) these tests should be undertaken in accordance with Annex A.7.1.4.3. Results should be normalised to a standard source impedance, or if this results in figures above the limits set in BS EN 61000-3-11 to a suitable Maximum Impedance.

For **Power Generating Modules** of **Registered Capacity** of greater than 75 A per phase (ie 50 kW) the installation must be designed in accordance with EREC P28.

Starting			Stopping			Running		
d max	dc	d(t)	d max	dc	d(t)	P st	P It 2 hours	

³ THD = Total Harmonic Distortion

0.27 %	0.28 %	0.1	0.24%	0.22%	0.1	0.40		
				0.22%	0.1	0.19	0.17	
0.27 %	0.28 %	0.1	0.24%	0.22%	0.1	0.19 (.17
N/A	N/A	N/A	N/A N/A N/A		N/A N/A		N/A	
4%	3.3%	3.3%	4%	3.3%	3.3%	1.0	0	.65
	R		0.24	Ω	XI	0.15		Ω
Standard Impedance				Ω	XI	0.15 * 0.25 ^		Ω
Maximum Impedance			N/A	Ω ΧΙ		N/A		Ω
3	N/A 4%	N/A N/A 4% 3.3% R nce R ance R	N/A N/A N/A 4% 3.3% 3.3% R nce R ance R	N/AN/AN/AN/A4%3.3%3.3%4%4%R0.24anceR0.24 * 0.4 ^	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	N/AN/AN/AN/AN/AN/A4%3.3%3.3%4%3.3%3.3%4%3.3%3.3%4%3.3%3.3%InceR0.24 * 0.4 ^ Ω XIanceRN/A Ω XI	N/AN/AN/AN/AN/AN/AN/A4%3.3%3.3%4%3.3%3.3%1.0 $M^{(R)}$ R0.24 Ω XI0.15NICER0.24* Ω XI0.15* $M^{(R)}$ RN/A Ω XI0.15* $M^{(R)}$ RN/A Ω XIN/A	N/AN/AN/AN/AN/AN/AN/AN/AN/A4%3.3%3.3%4%3.3%3.3%1.004%R0.24 Ω XI0.150anceRN/AN/A Ω XI0.15*anceRN/A Ω XIN/A

* Applies to three phase and split single phase **Power Generating Modules**.

^ Applies to single phase **Power Generating Module** and **Power Generating Modules** using two phases on a three phase system

For voltage change and flicker measurements the following formula is to be used to convert the measured values to the normalised values where the **Power Factor** of the generation output is 0.98 or above.

Normalised value = Measured value x reference source resistance/measured source resistance at test point

Single phase units reference source resistance is 0.4 $\boldsymbol{\Omega}$

Two phase units in a three phase system reference source resistance is 0.4 Ω

Two phase units in a split phase system reference source resistance is 0.24 Ω

Three phase units reference source resistance is 0.24 Ω

Where the **Power Factor** of the output is under 0.98 then the XI to R ratio of the test impedance should be close to that of the Standard Impedance.

The stopping test should be a trip from full load operation.

The duration of these tests need to comply with the particular requirements set out in the testing notes for the technology under test. Dates and location of the test need to be noted below

Test start date	25. Apr.2020	Test end date	30. Apr.2020				
Test location Ningbo Ginlong Technologies Co.,Ltd.							

4. Power quality – DC injection: The tests should be carried out on a single Generating Unit. Tests are to be carried out at three defined power levels $\pm 5\%$. At 230V a 100kW three phase Inverter has a current output of 144.9A ,so DC limit is 362.3mA. These tests should be undertaken in accordance with Annex

A.7.1.4.4.												
Test pow	er level		10%			55%	55%		100%			
		L1	L2	L3	L1	L2	L3	L	.1	L2	L3	
Recorded Amps		70.9	80.7	70.1	334.6	242.2	295.0	31	7.1	198.0	349.6	
as % of ra curre		0.049	0.056	0.048	0.231	0.167	0.204	0.2	219	0.137	0.241	
Lim	nit		0.25%			0.25%				0.25%		
carried out	t at three	voltage le	evels and	at Regist	ered Ca	ingle Powe apacity. Vo dertaken in	Itage to be	mair	ntaine	ed within	±1.5% of	
Voltage			0.94 pu	(216.2V)		1 pu (23	0V)		1.1	pu (253V)	
Measured	value		0.9946			0.9942			0.99	945		
Power Fac	ctor Limit		>0.95			>0.95			>0.9)5		
6. Protect A.7.1.2.3.	tion – Fr	equency	tests: T	hese test	ts shoul	d be carrie	ed out in a	accor	dance	e with th	e Annex	
Function		Setting			Trip test			"	"No trip tests"			
	Frequer	ncy Tir	ne delay	Freque	ency	Time dela	y Freque	Frequency /time		e Confirm no trip		
U/F stage 1	47.5H	z	20s	47.52	:Hz	20.034s		7.7Hz 30s	2	Yes		
U/F stage 2	47Hz		0.5s	47.01	Hz	0.541s		7.2Hz 9.5s	2	Yes		
								46.8Hz 0.45s			Yes	
O/F	52Hz		0.5s	51.98	Hz	0.535s	5s 51.8		2		ſes	
								2.2Hz).45s	2		ſes	
time delay	a larger d to be car	leviation f ried out a	han the m at the setti	ninimum re ng ± 0.2H	equired	trip is the s to operate t r the releva	he projectio	on ca	n be	used. The	e "No trip	
7. Protect	ion – Volt	age tests	s: These te	ests shoul	d be ca	rried out in a	accordance	with	Anne	ex A.7.1.2	2.	
Function		Setting			Trip te	st		"N	lo trip	o tests"		

U/V	Voltage	Time delay	Voltage	Time delay	Voltage /time	Confirm no trip
L1-N			183.6V	2.535s		Yes
L2-N	0.8 pu (184V)	2.5s	183.7V	2.539s	188V 5s	Yes
L3-N			183.5V	2.542s		Yes
					180V 2.45s	Yes
O/V stage 1	Voltage	Time delay	Voltage	Time delay	Voltage /time	Confirm no trip
L1-N			263.1V	1.030s		Yes
L2-N	1.14 pu (262.2V)	1.0s	263.2V	1.026s	258.2V 5.0s	Yes
L3-N			263.1V	1.029s		Yes
O/V stage 2	Voltage	Time delay	Voltage	Time delay	Voltage /time	Confirm no trip
L1-N			274.7V	0.541s		Yes
L2-N	1.19 pu (273.7V)	0.5s	274.6V	0.536s	269.7V 0.95s	Yes
L3-N			274.8V	0.539s		Yes
					277.7V 0.45s	Yes

Note for Voltage tests the Voltage required to trip is the setting ± 3.45 V. The time delay can be measured at a larger deviation than the minimum required to operate the protection. The No trip tests need to be carried out at the setting ± 4 V and for the relevant times as shown in the table above to ensure that the protection will not trip in error.

8. Protection – Loss of Mains test: These tests should be carried out in accordance with BS EN 62116. Annex A.7.1.2.4.

The following sub set of tests should be recorded in the following table.

Test Power and imbalance	33%	66%	100%	33%	66%	100%
	-5% Q	-5% Q	-5% P	+5% Q	+5% Q	+5% P
	Test 22	Test 12	Test 5	Test 31	Test 21	Test 10
Trip time. Limit is 0.5s	0.121s	0.350s	0.356s	0.116s	0.342s	0.367s

Loss of Mains Protection, Vector Shift Stability test. This test should be carried out in accordance with Annex A.7.1.2.6.

Start Frequency	Change	Confirm no trip	

Engineering Recommendation G99 Form A2-3

Type A Power Generating Modules

Positive Vector Shift	49.5Hz	49.5Hz +50		egrees		Yes	
Negative Vector Shift	50.5Hz		- 50 degrees		Yes		
Loss of Mains Protection A.7.1.2.6.	, RoCoF Stability te	est: This t	est should b	be carried out in	acco	ordance with Annex	
Ramp range	Test frequency	/ ramp:	Test	Duration		Confirm no trip	
49.0Hz to 51.0Hz	+0.95Hzs	-1	2	2.1s		Yes	
51.0Hz to 49.0Hz	-0.95Hzs	-1	2	2.1s		Yes	
9. Limited Frequency Se frequency of 50.4 Hz and D This test should be carried	Droop of 5%.		-	The test is usin	g the	e specific threshold	
Active Power response to injection tests are undertak				frequency		Yes	
Alternatively, simulation res	sults should be noted	below:					
Test sequence at Registered Capacity>80%	Measured Active Power Output	Frequency		Primary Power Source		Active Power Gradient	
Step a) 50.00Hz ±0.01Hz	99983W	50.00Hz				-	
Step b) 50.45Hz ±0.05Hz	97508W	50.45Hz		105230W		-	
Step c) 50.70Hz ±0.10Hz	86837W	50.70Hz				-	
Step d) 51.15Hz ±0.05Hz	67494W	51.15Hz				-	
Step e) 50.70Hz ±0.10Hz	86832W	50.70Hz				-	
Step f) 50.45Hz ±0.05Hz	97430W	50.45Hz				-	
Step g) 50.00Hz ±0.01Hz	99495W	50.00Hz				600kW/min	
Test sequence at Registered Capacity 40% - 60%	Measured Active Power Output	Frequency		cy Primary Power Source		Active Power Gradient	
Step a) 50.00Hz ±0.01Hz	50144W	50.00Hz				-	
Step b) 50.45Hz ±0.05Hz	47652W	50.45Hz		- 52760W		-	
Step c) 50.70Hz ±0.10Hz	37048W	50.70Hz				-	
Step d) 51.15Hz ±0.05Hz	17714W	51.15Hz				-	

Step e) 50.70Hz ±0.10Hz		37027W		50.70)Hz			-	
Step f) 50.45 Hz ±0.05Hz		47614W		50.45Hz		105230W		0 kW/min	
Step g) 50.00 Hz ±0.01Hz		100009W		50.00Hz		105230W		600kW/min	
10. Protection – Re-connection timer.									
Test should prove that the reconnection sequence starts after a minimum delay of 20 s for restoration of voltage and frequency to within the stage 1 settings of Table 10.1.									
			Checks on no reconnection when voltage or frequency is prought to just outside stage 1 limits of Table 10.1.						
30s	9s 45.6s			At 1.16 pu At 0.7 (266.2V) (180V		Du	At 47.4Hz	At 52.1Hz	
Confirmation that the Module does not re-		-	Yes		Yes		Yes	Yes	
11. Fault level cont	ributio	n : These tests s	hall b	e carried o	out in acco	ordance	with EREC G	99 Annex A.7.1.	
For Inverter output									
Time after fault				Volts			Amps		
20ms				55.5V			181.1A		
100ms				5	5.4V			0A	
250ms				5	5.2V			0A	
500ms				55.2V				0A	
Time to trip				0.063s			In seconds		
12. Self-Monitoring	solid	state switching	: No :	specified te	est require	ements.F	Refer to Anne	x A.7.1.7.	
It has been verified that in the event of the solid state switching device failing to disconnect the Power Park Module , the voltage on the output side of the switching device is reduced to a value below 50 volts within 0.5 s. N/A (Solid state switch means of Solis inverter uses mechaning voltage below 50V in 0.5s)						nical dual rela			
13. Wiring function	al test	s: If required by	para	15.2.1.					
Confirm that the relevant test schedule is attached (tests to be undertaken at time of commissioning)					N/A(Not applicable. Refer to 15.2.1, inverter is using special connector for wiring)				
14. Logic interface	(input	port).							
Confirm that an input	Confirm that an input port is provided and can be used				Yes (Logic interface is marked as "DRM" either on inverter or on external DRM device depending				

Engineering Recommendation G99 Form A2-3

to shut down the module.	on inverter model. Please see inverter or external DRM device manual for detail.)
Additional comments.	