

MATERIALS & SAFETY - R&D

TR 28365

page 1 of 8

FORM A2-3 Compliance Verification Report for Inverter Connected Power Generating Modules

This form should be used by the **Manufacturer** to demonstrate and declare compliance with the requirements of EREC G99. The form can be used in a variety of ways as detailed below:

1. To obtain Fully Type Tested status

The **Manufacturer** can use this form to obtain **Fully Type Tested** status for a **Power Generating Module** by registering this completed form with the Energy Networks Association (ENA) Type Test Verification Report Register.

Note:

Within this Form A2-3 the term Power Park Module will be used but its meaning can be interpreted within Form A2-3 to mean Power Park Module, Generating Unit or Inverter as appropriate for the context. However, note that compliance must be demonstrated at the Power Park Module level.

If the Power Generating Module is Fully Type Tested and registered with the Energy Networks Association (ENA) Type Test Verification Report Register, the Installation Document (Form A3) should include the Manufacturer's reference number (the Product ID), and this form does not need to be submitted.

Where the Power Generating Module is not registered with the ENA Type Test Verification Report Register or is not Fully Type Tested this form (all or in parts as applicable) needs to be completed and provided to the DNO, to confirm that the Power Generating Module has been tested to satisfy all or part of the requirements of this EREC G99.

Manufacturer's reference number		Froni	Fronius Symo 17.5-3-M				
PGM technology Manufacturer name		transformerless Fronius International GmbH					
							Adress
Tel	+43-7242-241	-0		Fax	+43-7242-241-224		
E:mail	pv@fronius.co	om		Web site	www.fronius.com		
Registered	I Capacity				17.5kW		
Type Test perform as	ed Manufacturer's	reference nun ment, prior to s	nber w hipmei	ill be manufaction to site and t	upplied by the company with the above ctured and tested to ensure that they hat no site Modifications are required 9.		
Signed	Heillinge	bel	On b	ehalf of	Fronius International GmbH		
Note that t house.	esting can be done	by the Manuf	facture	er of an individ	dual component or by an external test		
that person	or organisation sha	all keep copies	of all t	est records an	ions other than the Manufacturer then d results supplied to them to verify that competency to carry out the tests.		

Backup: Fronius Symo G99

MATERIALS & SAFETY - R&D

TR 28365

page 2 of 8

1. Operating Range: Five tests should be carried with the Power Generating Module operating at Registered Capacity and connected to a suitable test supply or grid simulation set. The power supplied by the primary source shall be kept stable within ± 5 % of the apparent power value set for the entire duration of each test sequence. Frequency, voltage and Active Power measurements at the output terminals of the Power Generating Module shall be recorded every second. The tests will verify that the Power Generating Module can operate within the required ranges for the specified period of time. The Interface Protection shall be disabled during the tests. In case of a PV Power Park Module the PV primary source may be replaced by a DC source. In case of a full converter Power Park Module (eg wind) the primary source and the prime mover Inverter/rectifier may be replaced by a DC source. Test 1 Voltage = 85% of nominal (195.5 V) Frequency = 47.0 Hz Power factor = 1 Period of test 20 s Test 2 Voltage = 85% of nominal (195.5 V). Frequency = 47.5 Hz Power factor = 1 Period of test 90 minutes Test 3 Voltage = 110% of nominal (253 V). Frequency = 51.5 Hz Power factor = 1 Period of test 90 minutes Test 4 Voltage = 110% of nominal (253 V). Frequency = 52.0 Hz Power factor = 1 Period of test 15 minutes Test 5 RoCoF withstand Confirm that the Power Generating Module is capable of staying connected to the Distribution Network and operate at rates of change of frequency up to 1 Hzs⁻¹ as measured over a period of 500 ms. Note that this is not expected to be demonstrated on site. Remark: No disconnection

MATERIALS & SAFETY - R&D

TR 28365

page 3 of 8

2. Power Quality - Harmonics:

For **Power Generating Modules** of **Registered Capacity** of less than 75 A per phase (ie 50 kW) the test requirements are specified in Annex A.7.1.5. These tests should be carried out as specified in BS EN 61000-3-12 The results need to comply with the limits of Table 2 of BS EN 61000-3-12 for single phase equipment and Table 3 of BS EN 610000-3-12 for three phase equipment.

Power Generating Modules with emissions close to the limits laid down in BS EN 61000-3-12 may require the installation of a transformer between 2 and 4 times the rating of the **Power Generating Module** in order to accept the connection to a **Distribution Network**.

For **Power Generating Modules** of **Registered Capacity** of greater than 75 A per phase (ie 50 kW) the installation shall be designed in accordance with EREC G5.

Power Generating Module rating per phase (rpp)		6,66667	6,66667 kVA		6 = Measured 23/rating per			
Harmonic	c At 45-55% of Registered Capacity		100% of Regi Capacity	100% of Registered Capacity		phase (kVA) Limit in BS EN 61000-3-12		
	Measured Value MV in Amps	%	Measured Value MV in Amps	%	1 Phase	3 phase		
2	0.022	0.077	0.029	0.101	8%	8%		
3	0.038	0.133	0.043	0.149	21.6%	Not stated		
4	0.019	0.066	0.033	0.112	4%	4%		
5	0.061	0.211	0.084	0.291	10.7%	10.7%		
6	0.014	0.049	0.013	0.044	2.67%	2.67%		
7	0.049	0.170	0.055	0.189	7.2%	7.2%		
8	0.032	0.111	0.027	0.093	2%	2%		
9	0.032	0.111	0.048	0.164	3.8%	Not stated		
10	0.019	0.065	0.022	0.076	1.6%	1.6%		
11	0.024	0.082	0.037	0.127	3.1%	3.1%		
12	0.014	0.048	0.015	0.050	1.33%	1.33%		
13	0.048	0.167	0.053	0.184	2%	2%		
THD ¹²	0.13	0.85	0.15	0.52	23%	13%		
PWHD ¹³	0.28	1.85	0.32	1.05	23%	22%		

¹² THD = Total Harmonic Distortion

¹³ PWHD = Partial Weighted Harmonic Distortion

MATERIALS & SAFETY - R&D

TR 28365

page 4 of 8

3. Power Quality - Voltage fluctuations and Flicker:

For **Power Generating Modules** of **Registered Capacity** of less than 75 A per phase (ie 50 kW) these tests should be undertaken in accordance with Annex A.7.1.4.3. Results should be normalised to a standard source impedance, or if this results in figures above the limits set in BS EN 61000-3-11 to a suitable Maximum Impedance.

For **Power Generating Modules** of **Registered Capacity** of greater than 75 A per phase (ie 50 kW) the installation shall be designed in accordance with EREC P28.

	Starting			Stoppin				unning		
	d _{max}	d	d _(t)	d _{max}	d	d _(t)	P _{st}		P _{it} 2h	ours
Measured Values at test impedance	0.72 %	3.02%		2.07%	2.1%	-	0.03	9	0.120	224
Normalised to standard impedance	0.72 %	3.02%	=	2.07%	2.1%	-	0.03	9	0.120	224
Normalised to required maximum impedance	-	-	-	-	-	-			-	
Limits set under BS EN 61000-3-11	4%	3.3%	3.3%	4%	3.3%	3.3%	1.0		0.65	
Test Impedance	R		0.24	Ω		X		0.15		Ω
Standard Impedance	R		0.24 * 0.4^	Ω		X		0.15 [*] 0.25^		Ω
Maximum Impedance	R		-	Ω		X		-		Ω

Applies to three phase and split single phase Power Generating Modules.

^ Applies to single phase **Power Generating Module** and **Power Generating Modules** using two phases on a three phase system.

For voltage change and flicker measurements the following formula is to be used to convert the measured values to the normalised values where the power factor of the generation output is 0.98 or above.

Normalised value = Measured value*reference source resistance/measured source resistance at test point.

Single phase units reference source resistance is 0.4 Ω

Two phase units in a three phase system reference source resistance is 0.4 Ω .

Two phase units in a split phase system reference source resistance is 0.24 Ω .

Three phase units reference source resistance is 0.24 Ω .

Where the power factor of the output is under 0.98 then the X to R ratio of the test impedance should be close to that of the Standard Impedance.

The stopping test should be a trip from full load operation.

The duration of these tests need to conform to the particular requirements set out in the testing notes for

MATERIALS & SAFETY	- R&D	TR 28365		page 5 of 8
the technology under test	Dates and loc	ation of the test need to	be noted below.	
Test start		Test end		
Test location		Laboratories, Fronius In ius Str 1, A-4600 Wels-T		

4. Power quality – DC injection: The tests should be carried out on a single **Generating Unit**. Tests are to be carried out at three defined power levels ±5%. At 230 V a 50 kW three phase **Inverter** has a current output of 217 A so DC limit is 543 mA. These tests should be undertaken in accordance with Annex A.7.1.4.4.

Test power level	10%	55%	100%
Recorded value in Amps	0.0264A	0.0186A	0.0239A
as % of rated AC current	0.091%	0.064%	0.083%
Limit	0.25%	0.25%	0.25%

are to be carried out	at three voltage leve % of the stated level du	els and at Registere	er Generating Module. Tests ad Capacity. Voltage to be ests should be undertaken in
Voltage	0.94 pu (216.2 V)	1 pu (230 V)	1.1 pu (253 V)
Measured value	1.00	1.00	1.00
Power Factor Limit	>0.95	>0.95	>0.95

Function	Setting		Trip test		"No trip tests	33
	Frequency	Time delay	Frequency	Time delay	Frequency /time	Confirm no trip
U/F stage 1	47.5Hz	20s	47.490Hz	20.380s	47.7Hz 30s	Confirmed
U/F stage 2	47Hz	0.5s	47.000Hz	0.536s	47.2Hz 19.5s	Confirmed
					46.8Hz 0.45s	Confirmed
O/F stage 1	52Hz	0.5s	52.015Hz	0.538s	51.8Hz 120.0s	Confirmed
					52.2Hz 0.45s	Confirmed

MATERIALS & SAFETY - R&D

TR 28365

page 6 of 8

Function	Setting		Trip test		"No trip tes	ts"
	Voltage	Time delay	Voltage	Time delay	Voltage /time	Confirm no trip
U/V	0.8 pu (184V)	2.5s	182.18V	2.586s	188V 5.0s	Confirmed
					180V 2,45s	Confirmed
O/V stage 1	1.14 (262.2V)	1.0s	261.59V	1.020s	258.2V 5.0s	Confirmed
O/V stage 2	1.19 (273.7V)	0.5s	272.85V	0.524s	269.7V 0.95s	Confirmed
					277.7V 0.45s	Confirmed

Note for Voltage tests the Voltage required to trip is the setting ± 3.45 V. The time delay can be measured at a larger deviation than the minimum required to operate the protection. The No trip tests need to be carried out at the setting ± 4 V and for the relevant times as shown in the table above to ensure that the protection will not trip in error.

8. Protection – Loss of Mains test: These tests should be carried out in accordance with BS EN 62116. Annex A.7.1.2.4.

						10.00
The following sub :	set of tests sho	ould be recorde	ed in the follow	ving table.		
Test Power and	33%	66%	100%	33%	66%	100%
imbalance	-5% Q	-5% Q	-5% P	+5% Q	+5% Q	+5% P
	Test 22	Test 12	Test 5	Test 31	Test 21	Test 10
Trip time	205.4ms	218.2ms	217.3ms	270.6ms	242.6ms	339.8ms
Limit is 0.5s						

Loss of Mains Protection, Vector Shift Stability test. This test should be carried out in accordance with Annex A.7.1.2.6.

	Start Frequency	Change	Confirm no trip		
Positive Vector	49.0Hz	+50 degrees	Confirmed		
Negative Vector	50.0Hz	-50 degrees	Confirmed		

Loss of Mains Protection, RoCoF Stability test: This test should be carried out in accordance with Annex A.7.1.2.6.							
Ramp range	Test frequency ramp:	Test Duration	Confirm no trip				
49.0 Hz to 51.0Hz	+0.95 Hzs ⁻¹	2.1 s	Confirmed				
51.0 Hz to 49.0Hz	-0.95 Hzs ⁻¹	2.1 s	Confirmed				

MATERIALS & SAFETY - R&D

TR 28365

page 7 of 8

Active Power response to	d out in accordan			Y/N
Frequency injection tests				
Alternatively, simulation re				
Test sequence at Registered Capacity >80%	Measured Active Power Output	Frequency	Primary Power Source	Active Power Gradient
Step a) 50.00 Hz ±0.01 Hz	17530W	50,00Hz		
Step b) 50.45 Hz ±0.05 Hz	17350W	50,45Hz		20%/Hz
Step c) 50.70 Hz ±0.10 Hz	16450W	50,70Hz		
Step d) 51.15 Hz ±0.05 Hz	14920W	51,15Hz		
Step e) 50.70 Hz ±0.10 Hz	16450W	50,70Hz		
Step f) 50.45 Hz ±0.05 Hz	17350W	50,45Hz		
Step g) 50.00 Hz ±0.01 Hz	17530W	50,00Hz		
Test sequence at Registered Capacity 40% - 60%	Measured Active Power Output	Frequency	Primary Power Source	Active Power Gradient
Step a) 50.00 Hz ±0.01 Hz	8750W	50,00Hz		
Step b) 50.45 Hz ±0.05 Hz	8650W	50,45Hz		
Step c) 50.70 Hz ±0.10 Hz	8210W	50,70Hz	1	
Step d) 51.15 Hz ±0.05 Hz	7430W	51,15Hz	9kW	20%/Hz
Step e) 50.70 Hz ±0.10 Hz	8210W	50,70Hz		
Step f) 50.45 Hz ±0.05 Hz	8650W	50,45Hz		
Step g) 50.00 Hz ±0.01 Hz	8750W	50,00Hz		

10. Protection - Re-connection timer.

Confirmation that the Power Generation Module does not re-connect.		on Confirmed	Confirmed	Confirmed	Confirmed
20s	81s	At 1.16 pu (266.2V)	At 0.78 pu (180.0V)	At 47.4Hz	At 52.1Hz
Time delay setting	Measured delay		t outside stage '	hen voltage or fi 1 limits of table 1	10.1.
restoration of	prove that the reconn of voltage and frequence	y to within the stag	ge 1 settings o	f Table 10.1.	

MATERIALS & SAFETY - R&D

TR 28365

page 8 of 8

11. Fault level cont Annex A.7.1.5.	tribution: These tes	sts shall be carried out in accordance with EREC G99
For inverter output		
Time after fault	Volts	Amps
20 ms	9.64	78.9
100 ms	8.07	36.0
250 ms	7.80	25.1
500 ms	7.67	19.0
Time to trip	0.389	In seconds

12. Self-Monitoring solid state switching: No specified test requirements. Refer to Annex A.7.1.7.

It has been verified that in the event of the solid state switching device failing to disconnect the **Power Park Module**, the voltage on the output side of the switching device is reduced to a value below 50 volts within 0.5 s.

NA

13. Wiring functional tests: If required by para 15.2.1.	
Confirm that the relevant test schedule is attached (tests to be undertaken at time of commissioning)	NA

14. Logic interface (input port).	
Confirm that an input port is provided and can be used to shut down the module.	Yes